971 resultados para Mixed oxides. Combustion by microwave. Alternatives fuels


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Report on a review of the Resource Enhancement and Protection (REAP) program and the Solid Waste Alternatives Program (SWAP) administered by the Department of Natural Resources (DNR) for the period July 1, 2009 through June 30, 2015

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pressão causada sobre os recursos energéticos é impulsionada pela evolução demográfica e pelo crescimento económico, que se vem registando principalmente nos países em desenvolvimento. Segundo várias estatísticas, a procura pela energia incide principalmente sobre os combustíveis fósseis, os quais, representam cerca de do mix de consumo mundial de energia primária. A incerteza sobre as reservas das fontes energéticas não renováveis, e os problemas ambientais derivados da sua conversão noutros tipos de energia, levaram a uma implementação de medidas com rumo à sustentabilidade e eficiência energética. Desta forma, o aumento da utilização sobre as fontes energéticas renováveis é de extrema importância. A biomassa é uma das fontes energéticas de maior relevo. A utilização de biomassa em caldeiras, oferece benefícios económicos, sociais e ambientais, tais como poupança financeira no combustível, conservação dos recursos fósseis e redução de emissões poluentes. As caldeiras desenvolvidas por empresas como a Ventil, são uma solução para a produção de energia térmica pela combustão da biomassa. Estes sistemas caracterizam-se por serem energeticamente eficientes nas várias componentes da sua operação. Assim, pretende-se fazer uma caracterização dos consumos energéticos associados à operação de uma caldeira Ventil de, nomeadamente o consumo de energia elétrica de equipamentos associados. Também será considerado um balanço energético da caldeira e determinado o seu rendimento. Desta forma, concluiu-se que a potência do sistema é de MJ/s, apresentando um rendimento de. Foram detetados motores mal dimensionados e apresentadas alternativas de substituição. Com um investimento de seria possível reduzir a fatura energética em, obtendo um payback de anos. No entanto, a fatura energética do sistema ultrapassa os anuais, sendo que do investimento é na compra do combustível e os restantes são relativos ao consumo de energia elétrica.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The TOPEX/POSEIDON mission offers the first opportunity to observe rain cells over the ocean by a dual-frequency radar altimeter (TOPEX) and simultaneously observe their natural radiative properties by a three-frequency radiometer (TOPEX microwave radiometer (TMR)). This work is a feasibility study aimed at understanding the capability and potential of the active/passive TOPEX/TMR system for oceanic rainfall detection. On the basis of past experiences in rain flagging, a joint TOPEX/TMR rain probability index is proposed. This index integrates several advantages of the two sensors and provides a more reliable rain estimate than the radiometer alone. One year's TOPEX/TMR TMR data are used to test the performance of the index. The resulting rain frequency statistics show quantitative agreement with those obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS) in the Intertropical Convergence Zone (ITCZ), while qualitative agreement is found for other regions of the world ocean. A recent finding that the latitudinal frequency of precipitation over the Southern Ocean increases steadily toward the Antarctic continent is confirmed by our result. Annual and seasonal precipitation maps are derived from the index. Notable features revealed include an overall similarity in rainfall pattern from the Pacific, the Atlantic, and the Indian Oceans and a general phase reversal between the two hemispheres, as well as a number of regional anomalies in terms of rain intensity. Comparisons with simultaneous Global Precipitation Climatology Project (GPCP) multisatellite precipitation rate and COADS rain climatology suggest that systematic differences also exist. One example is that the maximum rainfall in the ITCZ of the Indian Ocean appears to be more intensive and concentrated in our result compared to that of the GPCP. Another example is that the annual precipitation produced by TOPEX/TMR is constantly higher than those from GPCP and COADS in the extratropical regions of the northern hemisphere, especially in the northwest Pacific Ocean. Analyses of the seasonal variations of prominent rainy and dry zones in the tropics and subtropics show various behaviors such as systematic migration, expansion and contraction, merging and breakup, and pure intensity variations, The seasonality of regional features is largely influenced by local atmospheric events such as monsoon, storm, or snow activities. The results of this study suggest that TOPEX and its follow-on may serve as a complementary sensor to the special sensor microwave/imager in observing global oceanic precipitation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.), apart from being a functional food rich in carotenoids, vitamins and minerals, is also an important source of phenolic compounds [1 ,2]. As antioxidants, these functional molecules play an important role in the prevention of human pathologies and have many applications in nutraceutical, pharmaceutical and cosmeceutical industries. Therefore, the recovery of added-value phenolic compounds from natural sources, such as tomato surplus or industrial by-products, is highly desirable. Herein, the microwave-assisted extraction of the main phenolic acids and flavonoids from tomato was optimized. A S-Ieve! full factorial Box-Behnken design was implemented and response surface methodology used for analysis. The extraction time (0-20 min), temperature (60-180 "C), ethanol percentage (0-100%), solidlliquid ratio (5-45 g/L) and microwave power (0-400 W) were studied as independent variables. The phenolic profile of the studied tomato variety was initially characterized by HPLC-DAD-ESIIMS [2]. Then, the effect of the different extraction conditions, as defined by the used experimental design, on the target compounds was monitored by HPLC-DAD, using their UV spectra and retention time for identification and a series of calibrations based on external standards for quantification. The proposed model was successfully implemented and statistically validated. The microwave power had no effect on the extraction process. Comparing with the optimal extraction conditions for flavonoids, which demanded a short processing time (2 min), a low temperature (60 "C) and solidlliquid ratio (5 g/L), and pure ethanol, phenolic acids required a longer processing time ( 4.38 min), a higher temperature (145.6 •c) and solidlliquid ratio (45 g/L), and water as extraction solvent. Additionally, the studied tomato variety was highlighted as a source of added-value phenolic acids and flavonoids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global concentration of CO2 in the atmosphere is increasing rapidly. CO2 emissions have huge impact on global climate change. Therefore, efficient CO2 emission abatement strategies such as Carbon Capture and Storage (CCS) are required to combat this phenomenon. There are three major approaches for CCS: - Post-combustion capture; - Pre-combustion capture; - Oxyfuel process. Post-combustion capture offers some advantages in terms of cost as existing combustion technologies can still be used without radical changes on them. This makes post-combustion capture easier to implement as a retrofit option compared to the other two approaches. Therefore, post-combustion capture is probably the first technology that will be deployed on a large scale. The aim of this work is to study the adsorption equilibrium of CO2, CH4 and N2 in zeolite 5A at 40ºC. For this, experiments were performed to determine the isotherms of adsorption of CO2, CH4 and N2 near 40ºC with the conditions of the post-combustion capture processes. It has been found that the 5A zeolite adsorbs a significant quantity of CO2 values of about 5 mol/kg at a pressure of 5 bar.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tomato is the second most important vegetable crop worldwide and a rich source of industrially interesting antioxidants. Hence, the microwave-assisted extraction of hydrophilic (H) and lipophilic (L) antioxidants from a surplus tomato crop was optimized using response surface methodology. The relevant independent variables were temperature (T), extraction time (t), ethanol concentration (Et) and solid/liquid ratio (S/L). The concentration-time response methods of crocin and β-carotene bleaching were applied, since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively. The optimum operating conditions that maximized the extraction were as follows: t, 2.25 min; T, 149.2 ºC; Et, 99.1 %; and S/L, 45.0 g/L for H antioxidants; and t, 15.4 min; T, 60.0 ºC; Et, 33.0 %; and S/L, 15.0 g/L for L antioxidants. This industrial approach indicated that surplus tomatoes possess a high content of antioxidants, offering an alternative source for obtaining natural value-added compounds. Additionally, by testing the relationship between the polarity of the extraction solvent and the antioxidant activity of the extracts in H and L media (polarity-activity relationship), useful information for the study of complex natural extracts containing components with variable degrees of polarity was obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Starches are applied in several fields of industry. Amylose and amylopectin (natural polymers) constitute the starch in vegetable cells. In some processes native starches cannot support high stress conditions (high temperatures/acidity). Then, modification methods are developed aiming the improving of starch technological utilization. Oxidative modification with H2O2 has been the subject of many researches. UV rays as well microwave irradiation can be used. The aim was to confirm possible thermogravimetric alterations in native cassava starch (A) granules due to a double starch modification: 1st step) H2O2 standard solutions 0.1 mol L-1 (B), 0.2 mol L-1 (C) and 0.3 mol L-1 (D) and UV rays exposure for 1h; 2nd step) microwave irradiation for 5 min. The results of thermogravimetric curves (TG-DTA) show that the behaviors of the starch proprieties were modified. Highlighting, the modified samples C and D showed a decrease on the thermal stability step. This alteration turned them suitable to many field of industry like the paper one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New powertrain design is highly influenced by CO2 and pollutant limits defined by legislations, the demand of fuel economy in for real conditions, high performances and acceptable cost. To reach the requirements coming from both end-users and legislations, several powertrain architectures and engine technologies are possible (e.g. SI or CI engines), with many new technologies, new fuels, and different degree of electrification. The benefits and costs given by the possible architectures and technology mix must be accurately evaluated by means of objective procedures and tools in order to choose among the best alternatives. This work presents a basic design methodology and a comparison at concept level of the main powertrain architectures and technologies that are currently being developed, considering technical benefits and their cost effectiveness. The analysis is carried out on the basis of studies from the technical literature, integrating missing data with evaluations performed by means of powertrain-vehicle simplified models, considering the most important powertrain architectures. Technology pathways for passenger cars up to 2025 and beyond have been defined. After that, with support of more detailed models and experimentations, the investigation has been focused on the more promising technologies to improve internal combustion engine, such as: water injection, low temperature combustions and heat recovery systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To describe the clinical history of a child with aggressive behavior and recurring death-theme speech, and report the experience of the team of authors, who proposed an alternative to medication through the establishment of a protection network and the inter-sector implementation of the circle of security concept. A 5-year-old child has a violent and aggressive behavior at the day-care. The child was diagnosed by the healthcare center with depressive disorder and behavioral disorder, and was medicated with sertraline and risperidone. Side effects were observed, and the medications were discontinued. Despite several actions, such as talks, teamwork, psychological and psychiatric follow-up, the child's behavior remained unchanged. A unique therapeutic project was developed by Universidade Estadual de Campinas' Medical School students in order to establish a connection between the entities responsible for the child's care (daycare center, healthcare center, and family). Thus, the team was able to develop a basic care protection network. The implementation of the inter-sector circle of security, as well as the communication and cooperation among the teams, produced very favorable results in this case. This initiative was shown to be a feasible and effective alternative to the use of medication for this child.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development.