976 resultados para Microbiology|Biochemistry|Organic chemistry


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wide distribution of sapropelic deposits in the sedimentary cover of the oceans, their Cretaceous age, and their possible oil- and gas-generating characteristics allow us to regard these deposits as a regular global stage in the history of oceanic sedimentation. So, Cretaceous sapropelic deposits are a unique object for study. Cretaceous sapropelic deposits of DSDP Sites 463, 465, and 466, as well as similar sediments of the Atlantic and Indian Oceans, are characterized by enrichment in organic matter, which sometimes reaches 33% (Cape Verde Basin, DSDP Sites 367 and 368). The objective of this study is the elucidation of genesis, paleogeographic environment of sedimentation, and oil-generating potential of Cretaceous sapropelic deposits at these sites. Attention is given to petrographic composition and distribution of the organic matter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic matter in Miocene glacial sediments in Hole 739C on the Antarctic Shelf represents erosional recycled continental material. Various indications of maturity in bulk organic matter, kerogens, and extracts imply that an exposed section of mature organic carbon-rich material was present during the Miocene. Based on biomarker, n-alkane, and kerogen analysis, a massive diamictite of early Eocene/Oligocene age at Hole 739C contains immature organic matter. Visual and pyrolysis analyses of the kerogens suggest a predominance of terrestrial organic matter in all samples from Hole 739C. A reversal of thermal maturities, i.e., more-mature overlying less-mature sections, may be related to redeposition generated from glacial erosion. Siliciclastic fluviatile sediments of Lower Cretaceous age from Hole 741A were analyzed. The organic matter from this hole contains immature aliphatic and aromatic biomarkers as well as a suite of odd carbon number-dominated nalkanes. Visual examination and pyrolysis analysis of the kerogen suggests that predominantly immature terrestrial organic matter is present at Hole 741A. The similarities between Hole 739C Unit V and Hole 741A suggest that the source of the organic matter in the glacial sediments in Unit V at Hole 739C could be Cretaceous in age and similar to sediments sampled at Hole 741A in Prydz Bay.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rising anthropogenic CO2 emissions acidify the oceans, and cause changes to seawater carbon chemistry. Bacterial biofilm communities reflect environmental disturbances and may rapidly respond to ocean acidification. This study investigates community composition and activity responses to experimental ocean acidification in biofilms from the Australian Great Barrier Reef. Natural biofilms grown on glass slides were exposed for 11 d to four controlled pCO2 concentrations representing the following scenarios: A) pre-industrial (~300 ppm), B) present-day (~400 ppm), C) mid century (~560 ppm) and D) late century (~1140 ppm). Terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes revealed CO2-correlated bacterial community shifts between treatments A, B and D. Observed bacterial community shifts were driven by decreases in the relative abundance of Alphaproteobacteria and increases of Flavobacteriales (Bacteroidetes) at increased CO2 concentrations, indicating pH sensitivity of specific bacterial groups. Elevated pCO2 (C + D) shifted biofilm algal communities and significantly increased C and N contents, yet O2 fluxes, measured using in light and dark incubations, remained unchanged. Our findings suggest that bacterial biofilm communities rapidly adapt and reorganize in response to high pCO2 to maintain activity such as oxygen production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (delta13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average delta13C values for organic matter from most Cretaceous sites are between -26 and -28 per mil, and values heavier than about -25 per mil occur at very few sites. Most of the delta13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23 per mil. Values of delta13C of modern terrestrial organic matter are mostly between -23 and -33 per mil. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5 per mil in delta13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5 per mil relative to modern plankton OC. Diagenesis does not produce a significant shift in delta13C in Miocene to Holocene sediments, and therefore probably did not produce the isotopically light Cretaceous OC. This means that Cretaceous marine plankton must have had delta13C values that were about 5 per mil lighter than modern marine plankton, and at least several per mil lighter than Cretaceous terrestrial vegetation. The reason for these lighter values, however, is not obvious. It has been proposed that concentrations of CO2 were higher during the middle Cretaceous, and this more available CO2 may be responsible for the lighter delta13C values of Cretaceous marine organic matter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Members of the highly diverse bacterial phylum Verrucomicrobia are globally distributed in various terrestrial and aquatic habitats. They are key players in soils, but little is known about their role in aquatic systems. Thus, we applied newly designed 16S rRNA-targeted probe set for the identification of Verrucomicrobia and of clades within this phylum to a study concerning the seasonal abundance of Verrucomicrobia in waters of the humic lake Große Fuchskuhle (Germany) by catalyzed reporter deposition fluorescence in situ hybridization. The Lake Große Fuchskuhle is located in the large Mecklenburg-Brandenburg lake district near Berlin (53°10'N, 13°02'E). The lake was artificially divided into four basins (northwest, northeast, southwest, and southeast). We chose the two most contrasting basins, the acidotrophic humic southwestern (SW) basin with a high influx of allochthonous dissolved organic carbon (DOC) and the more mesotrophic northeastern (NE) basin, to study abundance and seasonality of Verrucomicrobia. Lake water was collected from depths of 0.5 m (oxic) and 4.5 m (seasonally anoxic) approximately trimonthly in 2000 (March, June, September and December). The lake hosted diverse Verrucomicrobia clades in all seasons. Either Spartobacteria (up to 19%) or Opitutus spp. (up to 7%) dominated the communities, whereas Prosthecobacter spp. were omnipresent in low numbers (<1%). Verrucomicrobial abundance and community composition varied between the seasons, and between more and less humic basins, but were rather stable in oxic and seasonally anoxic waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Incubation experiments with natural phytoplankton revealed a relationship between CO2 concentration and the production of transparent exopolymer particles (TEP), with TEP production being linearly related to theoretical CO2 uptake rates. The effect of different CO2 concentrations on TEP production was examined during incubation experiments with natural phytoplankton sampled at two different locations in the central Baltic Sea in summer 1999.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes index.