947 resultados para Medical laboratory technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enterprise architecture (EA) is a tool that aligns organization’s business-process with application and information technology (IT) through EAmodels. This EA model allows the organization to cut off unnecessary IT expenses and determines the future and current IT requirements and boosts organizational performance. Enterprise architecture may be employed in every firm where the firm or organization requires configurations between information technology and business functions. This research investigates the role of enterprise architecture in healthcare organizations and suggests the suitable EA framework for knowledge-based medical diagnostic system for EA modeling by comparing the two most widely used EA frameworks. The results of the comparison identified that the proposed EA has a better framework for knowledge-based medical diagnostic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An initial laboratory-scale evaluation of separation characteristics of membranes with nominal molecular weight cut-offs (NMWCO) ranging from 30 kD down to 0.5 kD indicated effective separation of betalains in the 0.5 kD region. Subsequent pilot-level trials using 1 kD, loose reverse osmosis (LRO) and reverse osmosis (RO) spiral-wound membranes showed LRO membrane to be very efficient with up to 96% salt and 47% other dissolved solids removed while retaining majority of the pigment (∼98%) in the betalain rich extract (BRE). The total betalain content in the BRE increased up to 46%, the highest recovery reported so far at pilot scale level. Interestingly, more than 95% of the nitrates were removed from the BRE after the three diafiltrations. These studies indicate that membrane technology is the most efficient technique to produce BRE with highly reduced amounts of salts and nitrate content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Decision-analytic modelling (DAM) has become a widespread method in health technology assessments (HTA), but the extent to which modelling is used differs among international HTA institutions. In Germany, the use of DAM is optional within HTAs of the German Institute of Medical Documentation and Information (DIMDI). Our study examines the use of DAM in DIMDI HTA reports and its effect on the quality of information provided for health policies. METHODS: A review of all DIMDI HTA reports (from 1998 to September 2012) incorporating an economic assessment was performed. All included reports were divided into two groups: HTAs with DAM and HTAs without DAM. In both groups, reports were categorized according to the quality of information provided for healthcare decision making. RESULTS: Of the sample of 107 DIMDI HTA reports, 17 (15.9%) used DAM for economic assessment. In the group without DAM, conclusions were limited by the quality of economic information in 51.1% of the reports, whereas we did not find limited conclusions in the group with DAM. Furthermore, 24 reports without DAM (26.7%) stated that using DAM would likely improve the quality of information of the economic assessment. CONCLUSION: The use of DAM techniques can improve the quality of HTAs in Germany. When, after a systematic review of existing literature within a HTA, it is clear that DAM is likely to positively affect the quality of the economic assessment DAM should be used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Rabies causes 55, 000 annual human deaths globally and about 10,000 people are exposed annually in Nigeria. Diagnosis of animal rabies in most African countries has been by direct microscopic examination. In Nigeria, the Seller’s stain test (SST) was employed until 2009. Before then, both SST and dFAT were used concurrently until the dFAT became the only standard method. Objective: This study was designed to assess the sensitivity and specificity of the SST in relation to the ‘gold standard’ dFAT in diagnosis of rabies in Nigeria. Methods: A total of 88 animal specimens submitted to the Rabies National Reference Laboratory, Nigeria were routinely tested for rabies by SST and dFAT. Results: Overall, 65.9% of the specimens were positive for rabies by SST, while 81.8% were positive by dFAT. The sensitivity of SST in relation to the gold standard dFAT was 81.0% (95% CIs; 69.7% - 88.6%), while the specificity was 100% (95% CIs; 76% - 100%). Conclusion: The relatively low sensitivity of the SST observed in this study calls for its replacement with the dFAT for accurate diagnosis of rabies and timely decisions on administration of PEP to prevent untimely deaths of exposed humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High quality, well designed medical devices are necessary to provide safe and effective clinical care for patients as well as to ensure the health and safety of professional and lay device users. Capturing the user requirements of users and incorporating these into design is an essential component of this. The field of ergonomics has an opportunity to assist, not only with this area, but also to encourage a more general consideration of the user during medical device development. A review of the literature on methods for assessing user requirements in engineering and ergonomics found that little published work exists on the ergonomics aspects of medical device development. In particular there is little advice available to developers on which issues to consider during design and development or recommendations for good practice in terms of the methods and approaches needed to capture the full range of user requirements. The Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) is a research collaboration that is working in conjunction with industrial collaborators to apply ergonomics methods to real case study projects with the ultimate aim of producing an industry-focused guide to applying ergonomics principles in medical device development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Medical Education Partnership Initiative, has helped to mitigate the digital divide in Africa. The aim of the study was to assess the level of access, attitude, and training concerning meaningful use of electronic resources and EBM among medical students at an African medical school. Methods: The study involved medical students at the University of Zimbabwe College of Health Sciences, Harare. The needs assessment tool consisted of a 21-question, paper-based, voluntary and anonymous survey. Results: A total of 61/67 (91%), responded to the survey. 60% of the medical students were ‘third-year medical students’. Among medical students, 85% of responders had access to digital medical resources, but 54% still preferred printed medical textbooks. Although 25% of responders had received training in EBM, but only 7% found it adequate. 98% of the participants did not receive formal training in journal club presentation or analytical reading of medical literature, but 77 % of them showed interest in learning these skills. Conclusion: Lack of training in EBM, journal club presentation and analytical reading skills have limited the impact of upgraded technology in enhancing the level of knowledge. This impact can be boosted by developing a curriculum with skills necessary in using EBM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The 2011 Malawi HIV guidelines promote CD4 monitoring for pre-ART assessment and considering HIVRNA monitoring for ART response assessment, while some clinics used CD4 for both. We assessed clinical ordering practices as compared to guidelines, and determined whether the samples were successfully and promptly processed. Methods We conducted a retrospective review of all patients seen in from August 2010 through July 2011,, in two urban HIV-care clinics that utilized 6-monthly CD4 monitoring regardless of ART status. We calculated the percentage of patients on whom clinicians ordered CD4 or HIVRNA analysis. For all samples sent, we determined rates of successful labprocessing, and mean time to returned results. Results Of 20581 patients seen, 8029 (39%) had at least one blood draw for CD4 count. Among pre-ART patients, 2668/2844 (93.8%) had CD4 counts performed for eligibility. Of all CD4 samples sent, 8082/9207 (89%) samples were successfully processed. Of those, mean time to processing was 1.6 days (s.d 1.5) but mean time to results being available to clinician was 9.3 days (s.d. 3.7). Regarding HIVRNA, 172 patients of 17737 on ART had a blood draw and only 118/213 (55%) samples were successfully processed. Mean processing time was 39.5 days (s.d. 21.7); mean time to results being available to clinician was 43.1 days (s.d. 25.1). During the one-year evaluated, there were multiple lapses in processing HIVRNA samples for up to 2 months. Conclusions Clinicians underutilize CD4 and HIVRNA as monitoring tools in HIV care. Laboratory processing failures and turnaround times are unacceptably high for viral load analysis. Alternative strategies need to be considered in order to meet laboratory monitoring needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MATCH (Multidisciplinary Assessment of Technology Centre for Healthcare) is a new collaboration in the UK that aims to support the healthcare sector by creating methods to assess the value of medical devices from concept through to mature product. A major aim of MATCH is to encourage the inclusion of the user throughout the product lifecycle in order to achieve devices that truly meet the requirements of their users. A review of the published literature indicates that user requirements are mainly collected during the design and evaluation stage of the product lifecycle whilst other areas, including the concept stage, have less user involvement. Complementing the literature review is an in-depth consultation with the medical device industry, which has identified a number of barriers encountered by companies when attempting to capture user requirements. These will be addressed by a number of case study projects, performed in collaboration with our industrial partners, that will examine the application and utility of different approaches to collecting and analysing data on user requirements. MATCH is focused on providing advice to device developers on how to select and apply methods that have maximum theoretical strength, practical application, cost-effectiveness and likelihood of wide sector acceptance. Feedback will be sought in order to ensure that the needs of the diverse medical device sector are met.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the Multidisciplinary Assessment of Technology Centre for Healthcare (MATCH) and outlines the problem of integrating a user-centred approach for development of medical devices together with the information and communication technology environments in which they are increasingly required to operate. We highlight some of the regulatory requirements that are relevant to user needs consideration in medical device development. Finally, we reveal a range of limitations in the current practice of the medical device industry in the area of user needs capture, based on responses from interviews with MATCH’s industry partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Poisoning accounts for about 7% of all accidents in children under 5 years and is implicated in over 5% of all childhood deaths in developing countries. Objectives: Due to the potential risks of methadone poisoning in children and increased cases of methadone poisoning among Iranian children, this study was conducted to investigate the clinical signs and symptoms and laboratory findings of methadone toxicity in children. Patients and Methods: The present retrospective, descriptive, cross-sectional study describes the clinical symptoms and signs and laboratory findings of methadone poisoning in children under 12 years old in Shahid Beheshti Hospital, Kashan, during the years 2009 to 2013. Results: Of 58 patients, 33 (56.9%) were male and 25 (43.1%) female (P = 0.294). The mean age of patients was 5.2 ± 1.0 years. All the cases of poisoning happened with methadone syrup, due to unsafe keeping of methadone in mineral water bottles and containers of other drugs. Signs and symptoms included drowsiness (91.4 %), miosis (75.9%), vomiting (69.0%), ineffective breathing (any kind of breathing problem except apnea) (62.1%), apnea (53.4%), cyanosis (43.1%), seizure (8.6%), ataxia (6.9%) and delirium (3.4%). Conclusions: Keeping methadone in appropriate containers and warning methadone consumers about the dangerous side effects of its consumption and the symptoms of methadone poisoning in children may minimize the occurrence of this form of poisoning and its complications in children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A platform to move gait analysis, which is normally restricted to a clinical environment in a well-equipped gait laboratory, into an ambulatory system, potentially in non-clinical settings is introduced. This novel system can provide functional measurements to guide therapeutic interventions for people requiring rehabilitation with limited access to such gait laboratories. BioKin system consists of three layers: a low-cost wearable wireless motion capture sensor, data collection and storage engine, and the motion analysis and visualisation platform. Moreover, a novel limb orientation estimation algorithm is implemented in the motion analysis platform. The performance of the orientation estimation algorithm is validated against the orientation results from a commercial optical motion analysis system and an instrumented treadmill. The study results demonstrate a root-mean-square error less than 4° and a correlation coefficient more than 0.95 when compared with the industry standard system. These results indicate that the proposed motion analysis platform is a potential addition to existing gait laboratories in order to facilitate gait analysis in remote locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To elicit medical leaders' views on reasons and remedies for the under-representation of women in medical leadership roles.

DESIGN: Qualitative study using semistructured interviews with medical practitioners who work in medical leadership roles. Interviews were transcribed verbatim and transcripts were analysed using thematic analysis.

SETTING: Public hospitals, private healthcare providers, professional colleges and associations and government organisations in Australia.

PARTICIPANTS: 30 medical practitioners who hold formal medical leadership roles.

RESULTS: Despite dramatic increases in the entry of women into medicine in Australia, there remains a gross under-representation of women in formal, high-level medical leadership positions. The male-dominated nature of medical leadership in Australia was widely recognised by interviewees. A small number of interviewees viewed gender disparities in leadership roles as a 'natural' result of women's childrearing responsibilities. However, most interviewees believed that preventable gender-related barriers were impeding women's ability to achieve and thrive in medical leadership roles. Interviewees identified a range of potential barriers across three broad domains-perceptions of capability, capacity and credibility. As a counter to these, interviewees pointed to a range of benefits of women adopting these roles, and proposed a range of interventions that would support more women entering formal medical leadership roles.

CONCLUSIONS: While women make up more than half of medical graduates in Australia today, significant barriers restrict their entry into formal medical leadership roles. These constraints have internalised, interpersonal and structural elements that can be addressed through a range of strategies for advancing the role of women in medical leadership. These findings have implications for individual medical practitioners and health services, as well as professional colleges and associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulating evidence show positive relationships between eating rate and body weight. Acute food intake is affected by eating rate, bite size, and palatability. The objective was to assess differences between participants who chose to use a spoon vs. fork in eating rate and food intake of four meals that differ in palatability (low vs. high salt) and in energy density (low vs. high fat). Forty-eight healthy adults (16 males, 18-54 y, BMI: 17.8-34.4 kg/m2) were recruited. Participants attended four lunch time sessions after a standardised breakfast. Meals were either (1) low-fat/low-salt, (2) low-fat/high-salt, (3) high-fat/low-salt, or (4) high-fat/high-salt. Nineteen participants (6 males) consistently used a fork and 21 (8 males) used a spoon, 8 participants were inconsistent in cutlery use and excluded from analyses. Spoon users had on average a higher BMI than fork users (p=0.006). Effects of cutlery use, BMI status (BMI<25 vs. BMI>25), salt, and fat, and their interactions were assessed in a General Linear Model. Spoon users consumed faster (fork: 53±2.8g/min; spoon: 62±2.1g/min, p=0.022) and tended to consume more (p=0.09), whereas the duration of the meals were similar (fork: 6.9±0.3min; spoon: 6:7±0.2min, p=0.55). BMI status affected both eating rate and food intake (p=0.005). There were no significant two-way or three-way interactions between salt, fat, and cutlery use on eating rate or food intake. In conclusion, participants who chose to consume with forks ate slower compared to spoon users.