921 resultados para Mechanics.
Resumo:
This paper consolidates evidence and material from a range of specialist and disciplinary fields to provide an evidence-based review and synthesis on the design and use of serious games in higher education. Search terms identified 165 papers reporting conceptual and empirical evidence on how learning attributes and game mechanics may be planned, designed and implemented by university teachers interested in using games, which are integrated into lesson plans and orchestrated as part of a learning sequence at any scale. The findings outline the potential of classifying the links between learning attributes and game mechanics as a means to scaffold teachers’ understanding of how to perpetuate learning in optimal ways while enhancing the in-game learning experience. The findings of this paper provide a foundation for describing methods, frames and discourse around experiences of design and use of serious games, linked to methodological limitations and recommendations for further research in this area.
Resumo:
Most pavement design procedures incorporate reliability to account for design inputs-associated uncertainty and variability effect on predicted performance. The load and resistance factor design (LRFD) procedure, which delivers economical section while considering design inputs variability separately, has been recognised as an effective tool to incorporate reliability into design procedures. This paper presents a new reliability-based calibration in LRFD format for a mechanics-based fatigue cracking analysis framework. This paper employs a two-component reliability analysis methodology that utilises a central composite design-based response surface approach and a first-order reliability method. The reliability calibration was achieved based on a number of field pavement sections that have well-documented performance history and high-quality field and laboratory data. The effectiveness of the developed LRFD procedure was evaluated by performing pavement designs of various target reliabilities and design conditions. The result shows an excellent agreement between the target and actual reliabilities. Furthermore, it is clear from the results that more design features need to be included in the reliability calibration to minimise the deviation of the actual reliability from the target reliability.
Resumo:
The physics of self-organization and complexity is manifested on a variety of biological scales, from large ecosystems to the molecular level. Protein molecules exhibit characteristics of complex systems in terms of their structure, dynamics, and function. Proteins have the extraordinary ability to fold to a specific functional three-dimensional shape, starting from a random coil, in a biologically relevant time. How they accomplish this is one of the secrets of life. In this work, theoretical research into understanding this remarkable behavior is discussed. Thermodynamic and statistical mechanical tools are used in order to investigate the protein folding dynamics and stability. Theoretical analyses of the results from computer simulation of the dynamics of a four-helix bundle show that the excluded volume entropic effects are very important in protein dynamics and crucial for protein stability. The dramatic effects of changing the size of sidechains imply that a strategic placement of amino acid residues with a particular size may be an important consideration in protein engineering. Another investigation deals with modeling protein structural transitions as a phase transition. Using finite size scaling theory, the nature of unfolding transition of a four-helix bundle protein was investigated and critical exponents for the transition were calculated for various hydrophobic strengths in the core. It is found that the order of the transition changes from first to higher order as the strength of the hydrophobic interaction in the core region is significantly increased. Finally, a detailed kinetic and thermodynamic analysis was carried out in a model two-helix bundle. The connection between the structural free-energy landscape and folding kinetics was quantified. I show how simple protein engineering, by changing the hydropathy of a small number of amino acids, can enhance protein folding by significantly changing the free energy landscape so that kinetic traps are removed. The results have general applicability in protein engineering as well as understanding the underlying physical mechanisms of protein folding. ^
Resumo:
The purpose of this study was to examine the relationship between the structure of jobs and burnout, and to assess to what extent, if any this relationship was moderated by individual coping methods. This study was supported by the Karasek's (1998) Job Demand-Control-Support theory of work stress as well as Maslach and Leiter's (1993) theory of burnout. Coping was examined as a moderator based on the conceptualization of Lazarus and Folkman (1984). ^ Two overall overarching questions framed this study: (a) what is the relationship between job structure, as operationalized by job title, and burnout across different occupations in support services in a large municipal school district? and (b) To what extent do individual differences in coping methods moderate this relationship? ^ This study was a cross-sectional study of county public school bus drivers, bus aides, mechanics, and clerical workers (N = 253) at three bus depot locations within the same district using validated survey instruments for data collection. Hypotheses were tested using simultaneous regression analyses. ^ Findings indicated that there were statistically significant and relevant relationships among the variables of interest; job demands, job control, burnout, and ways of coping. There was a relationship between job title and physical job demands. There was no evidence to support a relationship between job title and psychological demands. Furthermore, there was a relationship between physical demands, emotional exhaustion and personal accomplishment; key indicators of burnout. ^ Results showed significant correlations between individual ways of coping as a moderator between job structure, operationalized by job title, and individual employee burnout adding empirical evidence to the occupational stress literature. Based on the findings, there are implications for theory, research, and practice. For theory and research, the findings suggest the importance of incorporating transactional models in the study of occupational stress. In the area of practice, the findings highlight the importance of enriching jobs, increasing job control, and providing individual-level training related to stress reduction.^
Resumo:
11 pages Acknowledgments MCM thanks Xingbo Yang and Lisa Manning for their contribution to some aspects of the work reviewed here and for fruitful discussions. MCM was supported by NSF-DMR-305184. MCM and AP acknowledge support by the NSF IGERT program through award NSF-DGE-1068780. MCM, AP and DY were additionally supported by the Soft Matter Program at Syracuse University. AP acknowledges use of the Syracuse University HTC Campus Grid which is supported by NSF award ACI-1341006. YF was supported by NSF grant DMR-1149266 and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR-1420382.
Resumo:
11 pages Acknowledgments MCM thanks Xingbo Yang and Lisa Manning for their contribution to some aspects of the work reviewed here and for fruitful discussions. MCM was supported by NSF-DMR-305184. MCM and AP acknowledge support by the NSF IGERT program through award NSF-DGE-1068780. MCM, AP and DY were additionally supported by the Soft Matter Program at Syracuse University. AP acknowledges use of the Syracuse University HTC Campus Grid which is supported by NSF award ACI-1341006. YF was supported by NSF grant DMR-1149266 and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR-1420382.
Resumo:
When ligaments within the wrist are damaged, the resulting loss in range of motion and grip strength can lead to reduced earning potential and restricted ability to perform important activities of daily living. Left untreated, ligament injuries ultimately lead to arthritis and chronic pain. Surgical repair can mitigate these issues but current procedures are often non-anatomic and unable to completely restore the wrist’s complex network of ligaments. An inability to quantitatively assess wrist function clinically, both before and after surgery, limits the ability to assess the response to clinical intervention. Previous work has shown that bones within the wrist move in a similar pattern across people, but these patterns remain challenging to predict and model. In an effort to quantify and further develop the understanding of normal carpal mechanics, we performed two studies using 3D in vivo carpal bone motion analysis techniques. For the first study, we measured wrist laxity and performed CT scans of the wrist to evaluate 3D carpal bone positions. We found that through mid-range radial-ulnar deviation range of motion the scaphoid and lunate primarily flexed and extended; however, there was a significant relationship between wrist laxity and row-column behaviour. We also found that there was a significant relationship between scaphoid flexion and active radial deviation range of motion. For the second study, an analysis was performed on a publicly available database. We evaluated scapholunate relative motion over a full range of wrist positions, and found that there was a significant amount of variation in the location and orientation of the rotation axis between the two bones. Together the findings from the two studies illustrate the complexity and subject specificity of normal carpal mechanics, and should provide insights that can guide the development of anatomical wrist ligament repair surgeries that restore normal function.
Resumo:
The Ran GTPase protein is a guanine nucleotide-binding protein (GNBP) with an acknowledged profile in cancer onset, progression and metastases. The complex mechanism adopted by GNBPs in exchanging GDP for GTP is an intriguing process and crucial for Ran viability. The successful completion of the process is a fundamental aspect of propagating downstream signalling events. QM/MM molecular dynamics simulations were employed in this study to provide a deeper mechanistic understanding of the initiation of nucleotide exchange in Ran. Results indicate significant disruption of the metal-binding site upon interaction with RCC1 (the Ran guanine nucleotide exchange factor), overall culminating in the prominent shift of the divalent magnesium ion. The observed ion drifting is reasoned to occur as a consequence of the complex formation between Ran and RCC1 and is postulated to be a critical factor in the exchange process adopted by Ran. This is the first report to observe and detail such intricate dynamics for a protein in Ras superfamily.
Resumo:
In a world where students are increasing digitally tethered to powerful, ‘always on’ mobile devices, new models of engagement and approaches to teaching and learning are required from educators. Serious Games (SG) have proved to have instructional potential but there is still a lack of methodologies and tools not only for their design but also to support game analysis and assessment. This paper explores the use of SG to increase student engagement and retention. The development phase of the Circuit Warz game is presented to demonstrate how electronic engineering education can be radically reimagined to create immersive, highly engaging learning experiences that are problem-centered and pedagogically sound. The Learning Mechanics–Game Mechanics (LM-GM) framework for SG game analysis is introduced and its practical use in an educational game design scenario is shown as a case study.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Abstract not available
Resumo:
A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.