978 resultados para Mechanical Measurements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on investigations into the influence of heat treatment on the manufacturing of oat flakes. Sources of variation in the oat flake quality are reviewed, including the whole chain from the farm to the consumer. The most important quality parameters of oat flakes are the absence of lipid hydrolysing enzymes, specific weight, thickness, breakage (fines), water absorption. Flavour, colour and pasting properties are also important, but were not included in the experimental part of this study. Of particular interest was the role of heat processing. The first possible heat treatment may occur already during grain drying, which in Finland generally happens at the farm. At the mill, oats are often kilned to stabilise the product by inactivating lipid hydrolysing enzymes. Almost invariably steaming is used during flaking, to soften the groats and reduce flake breakage. This thesis presents the use of a material science approach to investigating a complex system, typical of food processes. A combination of fundamental and empirical rheological measurements was used together with a laboratory scale process to simulate industrial processing. The results were verified by means of industrial trials. Industrially produced flakes at three thickness levels (nominally 0.75, 0.85 and 0.90 mm) were produced from kilned and unkilned oat groats, and the flake strength was measured at different moisture contents. Kilning was not found to significantly affect the force required to puncture a flake with a 2mm cylindrical probe, which was taken as a measure of flake strength. To further investigate how heat processing contributes to flake quality, dynamic mechanical analysis was used to characterise the effect of heat on the mechanical properties of oats. A marked stiffening of the groat, of up to about 50% increase in storage modulus, was observed during first heating at around 36 to 57°C. This was also observed in tablets prepared from ground groats and extracted oat starch. This stiffening was thus attributed to increased adhesion between starch granules. Groats were steamed in a laboratory steamer and were tempered in an oven at 80 110°C for 30 90 min. The maximum force required to compress the steamed groats to 50% strain increased from 50.7 N to 57.5 N as the tempering temperature was increased from 80 to 110°C. Tempering conditions also affected water absorption. A significantly higher moisture content was observed for kilned (18.9%) compared to unkilned (17.1%) groats, but otherwise had no effect on groat height, maximum force or final force after a 5 s relaxation time. Flakes were produced from the tempered groats using a laboratory flaking machine, using a roll gap of 0.4 mm. Apart from specific weight, flake properties were not influenced by kilning. Tempering conditions however had significant effects on the specific weight, thickness and water absorption of the flakes, as well as on the amount of fine material (<2 mm) produced during flaking. Flake strength correlated significantly with groat strength and flake thickness. Trial flaking at a commercial mill confirmed that groat temperature after tempering influenced water absorption. Variation in flake strength was observed , but at the groat temperatures required to inactivate lipase, it was rather small. Cold flaking of groats resulted in soft, floury flakes. The results presented in this thesis suggest that heating increased the adhesion between starch granules. This resulted in an increase in the stiffness and brittleness of the groat. Brittle fracture, rather than plastic flow, during flaking could result in flaws and cracks in the flake. These would be expected to increase water absorption. This was indeed observed as tempering temperature increased. Industrial trials, conducted with different groat temperatures, confirmed the main findings of the laboratory experiments. The approach used in the present study allowed the systematic study of the effect of interacting process parameters on product quality. There have been few scientific studies of oat processing, and these results can be used to understand the complex effects of process variables on flake quality. They also offer an insight into what happens as the oat groat is deformed into a flake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pond apple usually occurs in swampy areas, but mechanical control may be a viable option in some locations during drier periods. Two machines, the Positrack™ and the Tracksaw™, have been trialled for initial kill rate, amount of follow-up control required, safety to field operators, cost-efficiency and selectivity (effect on native vegetation), compared to other control options. The Positrack™ is a tracked bobcat with a slasher-type attachment that cuts individual trees off near ground level and mulches them. It has no on-board herbicide application capability and requires an additional on-ground operator to apply herbicide by hand. The Tracksaw™ is a tracked mini-excavator with a chainsaw bar and spray applicator on the boom that cuts individual trees off near ground level and applies chemical immediately to the cut stump, requiring only a single operator. Initial trials were done in infestations of similar sizes and densities at the Daintree (Positrack™) and in Innisfail (Tracksaw™) in late 2009. Kill rates to date are 83% for Positrack™ mechanical, 95% for Positrack™ mechanical plus herbicide, and 78% for the Tracksaw™ combined treatment. If ongoing comparison proves either of these machines to be more cost effective, selective, and safer than traditional control methods, mechanical control methods may become more widely used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona. PNC modes were analysed with respect to ambient temperature, land use and urban characteristics, combined with the measured elemental carbon concentrations, NOx (Brisbane) and NO2 (Barcelona). The trends and modes of the quantified weekday average daily cycles of ambient PNC exhibited significant differences between the two cities. PNC increases were observed during traffic rush hours in both cases. However, the mid-day peak was dominant in Brisbane schools and had the highest contribution to total PNC for both indoors and outdoors. In Barcelona, the contribution from traffic was highest for ambient PNC, while the mid-day peak had a slightly higher contribution for indoor concentrations. Analysis of the relationships between PNC and land use characteristics in Barcelona schools showed a moderate correlation with the percentage of road network area and an anti-correlation with the percentage of green area. No statistically significant correlations were found for Brisbane. Overall, despite many similarities between the two cities, school-based exposure patterns were different. The main source of ambient PNC at schools was shown to be traffic in Barcelona and mid-day new particle formation in Brisbane. The mid-day PNC peak in Brisbane could have been driven by the combined effect of background and meteorological conditions, as well as other local/distant sources. The results have implications for urban development, especially in terms of air quality mitigation and management at schools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose We investigated the effects of weed control and fertilization at early establishment on foliar stable carbon (δ13C) and nitrogen (N) isotope (δ15N) compositions, foliar N concentration, tree growth and biomass, relative weed cover and other physiological traits in a 2-year old F1 hybrid (Pinus elliottii var. elliottii (Engelm) × Pinus caribaea var. hondurensis (Barr. ex Golf.)) plantation grown on a yellow earth in southeast Queensland of subtropical Australia. Materials and methods Treatments included routine weed control, luxury weed control, intermediate weed control, mechanical weed control, nil weed control, and routine and luxury fertilization in a randomised complete block design. Initial soil nutrition and soil fertility parameters included (hot water extractable organic carbon (C) and total nitrogen (N), total C and N, C/N ratio, labile N pools (nitrate (NO3 −) and ammonium (NH4 +)), extractable potassium (K+)), soil δ15N and δ13C. Relative weed cover, foliar N concentrations, tree growth rate and physiological parameters including photosynthesis, stomatal conductance, photosynthetic nitrogen use efficiency, foliar δ15N and foliar δ13C were also measured at early establishment. Results and discussion Foliar N concentration at 1.25 years was significantly different amongst the weed control treatments and was negatively correlated to the relative weed cover at 1.1 years. Foliar N concentration was also positively correlated to foliar δ15N and foliar δ13C, tree height, height growth rates and tree biomass. Foliar δ15N was negatively correlated to the relative weed cover at 0.8 and 1.1 years. The physiological measurements indicated that luxury fertilization and increasing weed competition on these soils decreased leaf xylem pressure potential (Ψxpp) when compared to the other treatments. Conclusions These results indicate how increasing N resources and weed competition have implications for tree N and water use at establishment in F1 hybrid plantations of southeast Queensland, Australia. These results suggest the desirability of weed control, in the inter-planting row, in the first year to maximise site N and water resources available for seedling growth. It also showed the need to avoid over-fertilisation, which interfered with the balance between available N and water on these soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-frequency (5–100 kHz) dielectric constant epsilon (Porson) has been measured in the temperature range 7 × 10−5 < t = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of Image consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seizure resistance of several cast aluminium base alloys has been examined using a standard Hohman Wear Tester. Disks of aluminium base alloys were run against a standard aluminium 12% silicon base alloy. The seizure resistance of the alloys (as measured by the lowest bearing parameter reached before seizure) increased with hardness, yield and tensile strength. In Al-Si-Ni alloys where silicon and nickel have little solid solubility in α-aluminium and Si and Ni Al3 hard phases are formed, the minimum bearing parameter decreased with the parameter V (The product of vol. % of hard phases in the disk and the shoe). Apparently the silicon and NiAl3 particles provided discontinuities in the matrix and reduced the probability (1 − V) of the α-aluminium phase in the disk coming into contact with the α-aluminium phase in the shoe. The copper and magnesium containing Al-Si-Ni alloys with lesser volumes of hard phases exhibit considerably better seizure resistance indicating that a slight increase in the solute content or the hardness of the primary α-phase leads to a considerable increase in seizure resistance. Deformation during wear and seizure leads to fragmentation of the original hard particles into considerably smaller particles uniformly dispersed in the deformed α-aluminium matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A minimax filter is derived to estimate the state of a system, using observations corrupted by colored noise, when large uncertainties in the plant dynamics and process noise are presen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic velocities in aqueous solutions of some metal acetates, monochloroacelates and trichloroacetates, and the respective acids have been measured at 1 MHz frequency using the pulse technique. The ultrsonic velocity, adiabatic compressibility and apperent molal compressibility were measured as a function of concentration. The apparent molal compressibility values at infinite dilution were calculated and used to determine the hydration numbers.