723 resultados para Meaningful engagement


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Preconception allergen immunization prevents neonatal allergen sensitization in mice by a complex interaction between regulatory cells/factors and antibodies. The present study assessed the influence of maternal immunization with ovalbumin (OVA) on the immune response of 3 day-old and 3 week-old offspring immunized or non-immunized with OVA and evaluated the effect of IgG treatment during fetal development or neonatal period. Results: Maternal immunization with OVA showed increased levels of Fc gamma RIIb expression in splenic B cells of neonates, which were maintained for up to 3 weeks and not affected by additional postnatal OVA immunization. Maternal immunization also exerted a down-modulatory effect on both IL-4 and IFN-gamma-secreting T cells and IL-4 and IL-12-secreting B cells. Furthermore, immunized neonates from immunized mothers showed a marked inhibition of antigen-specifc IgE Ab production and lowered Th2/Th1 cytokine levels, whereas displaying enhanced Fc gamma RIIb expression on B cells. These offspring also showed reduced antigen-specific proliferative response and lowered B cell responsiveness. Moreover, in vitro evaluation revealed an impairment of B cell activation upon engagement of B cell antigen receptor by IgG from OVA-immunized mice. Finally, in vivo IgG transference during pregnancy or breastfeeding revealed that maternal Ab transference was able to increase regulatory cytokines, such as IL-10, in the prenatal stage; yet only the postnatal treatment prevented neonatal sensitization. None of the IgG treatments induced immunological changes in the offspring, as it was observed for those from OVA-immunized mothers. Conclusion: Maternal immunization upregulates the inhibitory Fc gamma RIIb expression on offspring B cells, avoiding skewed Th2 response and development of allergy. These findings contribute to the advancement of prophylactic strategies to prevent allergic diseases in early life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of the detector dynamics to the weak measurement is analyzed. According to the usual theory [Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)] the outcome of a weak measurement with preselection and postselection can be expressed as the real part of a complex number: the weak value. By accounting for the Hamiltonian evolution of the detector, here we find that there is a contribution proportional to the imaginary part of the weak value to the outcome of the weak measurement. This is due to the coherence of the probe being essential for the concept of complex weak value to be meaningful. As a particular example, we consider the measurement of a spin component and find that the contribution of the imaginary part of the weak value is sizable.