883 resultados para Mean Curvature Equation
Resumo:
Recent gravity missions have produced a dramatic improvement in our ability to measure the ocean’s mean dynamic topography (MDT) from space. To fully exploit this oceanic observation, however, we must quantify its error. To establish a baseline, we first assess the error budget for an MDT calculated using a 3rd generation GOCE geoid and the CLS01 mean sea surface (MSS). With these products, we can resolve MDT spatial scales down to 250 km with an accuracy of 1.7 cm, with the MSS and geoid making similar contributions to the total error. For spatial scales within the range 133–250 km the error is 3.0 cm, with the geoid making the greatest contribution. For the smallest resolvable spatial scales (80–133 km) the total error is 16.4 cm, with geoid error accounting for almost all of this. Relative to this baseline, the most recent versions of the geoid and MSS fields reduce the long and short-wavelength errors by 0.9 and 3.2 cm, respectively, but they have little impact in the medium-wavelength band. The newer MSS is responsible for most of the long-wavelength improvement, while for the short-wavelength component it is the geoid. We find that while the formal geoid errors have reasonable global mean values they fail capture the regional variations in error magnitude, which depend on the steepness of the sea floor topography.
Resumo:
Purpose – Progress in retrofitting the UK's commercial properties continues to be slow and fragmented. New research from the UK and USA suggests that radical changes are needed to drive large-scale retrofitting, and that new and innovative models of financing can create new opportunities. The purpose of this paper is to offer insights into the terminology of retrofit and the changes in UK policy and practice that are needed to scale up activity in the sector. Design/methodology/approach – The paper reviews and synthesises key published research into commercial property retrofitting in the UK and USA and also draws on policy and practice from the EU and Australia. Findings – The paper provides a definition of “retrofit”, and compares and contrasts this with “refurbishment” and “renovation” in an international context. The paper summarises key findings from recent research and suggests that there are a number of policy and practice measures which need to be implemented in the UK for commercial retrofitting to succeed at scale. These include improved funding vehicles for retrofit; better transparency in actual energy performance; and consistency in measurement, verification and assessment standards. Practical implications – Policy and practice in the UK needs to change if large-scale commercial property retrofit is to be rolled out successfully. This requires mandatory legislation underpinned by incentives and penalties for non-compliance. Originality/value – This paper synthesises recent research to provide a set of policy and practice recommendations which draw on international experience, and can assist on implementation in the UK.
Resumo:
Numerical experiments are described that pertain to the climate of a coupled atmosphere–ocean–ice system in the absence of land, driven by modern-day orbital and CO2 forcing. Millennial time-scale simulations yield a mean state in which ice caps reach down to 55° of latitude and both the atmosphere and ocean comprise eastward- and westward-flowing zonal jets, whose structure is set by their respective baroclinic instabilities. Despite the zonality of the ocean, it is remarkably efficient at transporting heat meridionally through the agency of Ekman transport and eddy-driven subduction. Indeed the partition of heat transport between the atmosphere and ocean is much the same as the present climate, with the ocean dominating in the Tropics and the atmosphere in the mid–high latitudes. Variability of the system is dominated by the coupling of annular modes in the atmosphere and ocean. Stochastic variability inherent to the atmospheric jets drives variability in the ocean. Zonal flows in the ocean exhibit decadal variability, which, remarkably, feeds back to the atmosphere, coloring the spectrum of annular variability. A simple stochastic model can capture the essence of the process. Finally, it is briefly reviewed how the aquaplanet can provide information about the processes that set the partition of heat transport and the climate of Earth.
Resumo:
Confidence in projections of global-mean sea level rise (GMSLR) depends on an ability to account for GMSLR during the twentieth century. There are contributions from ocean thermal expansion, mass loss from glaciers and ice sheets, groundwater extraction, and reservoir impoundment. Progress has been made toward solving the “enigma” of twentieth-century GMSLR, which is that the observed GMSLR has previously been found to exceed the sum of estimated contributions, especially for the earlier decades. The authors propose the following: thermal expansion simulated by climate models may previously have been underestimated because of their not including volcanic forcing in their control state; the rate of glacier mass loss was larger than previously estimated and was not smaller in the first half than in the second half of the century; the Greenland ice sheet could have made a positive contribution throughout the century; and groundwater depletion and reservoir impoundment, which are of opposite sign, may have been approximately equal in magnitude. It is possible to reconstruct the time series of GMSLR from the quantified contributions, apart from a constant residual term, which is small enough to be explained as a long-term contribution from the Antarctic ice sheet. The reconstructions account for the observation that the rate of GMSLR was not much larger during the last 50 years than during the twentieth century as a whole, despite the increasing anthropogenic forcing. Semiempirical methods for projecting GMSLR depend on the existence of a relationship between global climate change and the rate of GMSLR, but the implication of the authors' closure of the budget is that such a relationship is weak or absent during the twentieth century.
Resumo:
Purpose – Investors are now able to analyse more noise-free news to inform their trading decisions than ever before. Their expectation that more information means better performance is not supported by previous psychological experiments which argue that too much information actually impairs performance. The purpose of this paper is to examine whether the degree of information explicitness improves stock market performance. Design/methodology/approach – An experiment is conducted in a computer laboratory to examine a trading simulation manipulated from a real market-shock. Participants’ performance efficiency and effectiveness are measured separately. Findings – The results indicate that the explicitness of information neither improves nor impairs participants’ performance effectiveness from the perspectives of returns, share and cash positions, and trading volumes. However, participants’ performance efficiency is significantly affected by information explicitness. Originality/value – The novel approach and findings of this research add to the knowledge of the impact of information explicitness on the quality of decision making in a financial market environment.
Resumo:
The precipitation of bovine serum albumin (BSA), lysozyme (LYS) and alfalfa leaf protein (ALF) by two large- and two medium-sized condensed tannin (CT) fractions of similar flavan-3-ol subunit composition is described. CT fractions isolated from white clover flowers and big trefoil leaves exhibited high purity profiles by 1D/2D NMR and purities >90% (determined by thiolysis). At pH 6.5, large CTs with a mean degree of polymerization (mDP) of ~18 exhibited similar protein precipitation behaviors and were significantly more effective than medium CTs (mDP ~9). Medium CTs exhibited similar capacities to precipitate ALF or BSA, but showed small but significant differences in their capacity to precipitate LYS. All CTs precipitated ALF more effectively than BSA or LYS. Aggregation of CT-protein complexes likely aided precipitation of ALF and BSA, but not LYS. This study, one of the first to use CTs of confirmed high purity, demonstrates that mDP of CTs influences protein precipitation efficacy.
Resumo:
In this paper, we summarise this recent progress to underline the features specific to this nonlinear elliptic case, and we give a new classification of boundary conditions on the semistrip that satisfy a necessary condition for yielding a boundary value problem can be effectively linearised. This classification is based on formulation the equation in terms of an alternative Lax pair.
Resumo:
The study of the mechanical energy budget of the oceans using Lorenz available potential energy (APE) theory is based on knowledge of the adiabatically re-arranged Lorenz reference state of minimum potential energy. The compressible and nonlinear character of the equation of state for seawater has been thought to cause the reference state to be ill-defined, casting doubt on the usefulness of APE theory for investigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of temperature and salinity in the context of the seawater Boussinesq approximation, which we illustrate using climatological data, we show that compressibility effects are in fact minor. The reference state can be regarded as a well defined one-dimensional function of depth, which forms a surface in temperature, salinity and density space between the surface and the bottom of the ocean. For a very small proportion of water masses, this surface can be multivalued and water parcels can have up to two statically stable levels in the reference density profile, of which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density profile than classifying in the opposite direction. However, this difference is negligible. We show that the reference state obtained by standard sorting methods is equivalent, though computationally more expensive, to the volume frequency distribution approach. The approach we present can be applied systematically and in a computationally efficient manner to investigate the APE budget of the ocean circulation using models or climatological data.
Resumo:
The classic vertical advection-diffusion (VAD) balance is a central concept in studying the ocean heat budget, in particular in simple climate models (SCMs). Here we present a new framework to calibrate the parameters of the VAD equation to the vertical ocean heat balance of two fully-coupled climate models that is traceable to the models’ circulation as well as to vertical mixing and diffusion processes. Based on temperature diagnostics, we derive an effective vertical velocity w∗ and turbulent diffusivity k∗ for each individual physical process. In steady-state, we find that the residual vertical velocity and diffusivity change sign in mid-depth, highlighting the different regional contributions of isopycnal and diapycnal diffusion in balancing the models’ residual advection and vertical mixing. We quantify the impacts of the time-evolution of the effective quantities under a transient 1%CO2 simulation and make the link to the parameters of currently employed SCMs.
Resumo:
In order to calculate unbiased microphysical and radiative quantities in the presence of a cloud, it is necessary to know not only the mean water content but also the distribution of this water content. This article describes a study of the in-cloud horizontal inhomogeneity of ice water content, based on CloudSat data. In particular, by focusing on the relations with variables that are already available in general circulation models (GCMs), a parametrization of inhomogeneity that is suitable for inclusion in GCM simulations is developed. Inhomogeneity is defined in terms of the fractional standard deviation (FSD), which is given by the standard deviation divided by the mean. The FSD of ice water content is found to increase with the horizontal scale over which it is calculated and also with the thickness of the layer. The connection to cloud fraction is more complicated; for small cloud fractions FSD increases as cloud fraction increases while FSD decreases sharply for overcast scenes. The relations to horizontal scale, layer thickness and cloud fraction are parametrized in a relatively simple equation. The performance of this parametrization is tested on an independent set of CloudSat data. The parametrization is shown to be a significant improvement on the assumption of a single-valued global FSD
Resumo:
The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.
Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective
Resumo:
We study discontinuous Galerkin approximations of the p-biharmonic equation for p∈(1,∞) from a variational perspective. We propose a discrete variational formulation of the problem based on an appropriate definition of a finite element Hessian and study convergence of the method (without rates) using a semicontinuity argument. We also present numerical experiments aimed at testing the robustness of the method.
Resumo:
A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade−1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century.
Resumo:
The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.