867 resultados para Maya domiciliary transformation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new direction in Maya archaeology is toward achieving a greater understanding of people and their roles and their relations in the past. To answer emerging humanistic questions about ancient people's lives Mayanists are increasingly making use of new and existing scientific methods from archaeology and other disciplines. Maya archaeology is bridging the divide between the humanities and sciences to answer questions about ancient people previously considered beyond the realm of archaeological knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most productive (“star”) bioscientists had intellectual human capital of extraordinary scientific and pecuniary value for some 10–15 years after Cohen and Boyer’s 1973 founding discovery for biotechnology [Cohen, S., Chang, A., Boyer, H. & Helling, R. (1973) Proc. Natl. Acad. Sci. USA 70, 3240–3244]. This extraordinary value was due to the union of still scarce knowledge of the new research techniques and genius and vision to apply them in novel, valuable ways. As in other sciences, star bioscientists were very protective of their techniques, ideas, and discoveries in the early years of the revolution, tending to collaborate more within their own institution, which slowed diffusion to other scientists. Close, bench-level working ties between stars and firm scientists were needed to accomplish commercialization of the breakthroughs. Where and when star scientists were actively producing publications is a key predictor of where and when commercial firms began to use biotechnology. The extent of collaboration by a firm’s scientists with stars is a powerful predictor of its success: for an average firm, 5 articles coauthored by an academic star and the firm’s scientists result in about 5 more products in development, 3.5 more products on the market, and 860 more employees. Articles by stars collaborating with or employed by firms have significantly higher rates of citation than other articles by the same or other stars. The U.S. scientific and economic infrastructure has been particularly effective in fostering and commercializing the bioscientific revolution. These results let us see the process by which scientific breakthroughs become economic growth and consider implications for policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT) proteins perform key roles in mediating signaling by cytokines and growth factors, including platelet-derived growth factor (PDGF). In addition, Src family kinases activate STAT signaling and are required for PDGF-induced mitogenesis in normal cells. One STAT family member, Stat3, has been shown to have an essential role in cell transformation by the Src oncoprotein. However, the mechanisms by which STAT-signaling pathways contribute to mitogenesis and transformation are not fully defined. We show here that disruption of Stat3 signaling by using dominant-negative Stat3β protein in NIH 3T3 fibroblasts suppresses c-Myc expression concomitant with inhibition of v-Src-induced transformation. Ectopic expression of c-Myc is able to partially reverse this inhibition, suggesting that c-Myc is a downstream effector of Stat3 signaling in v-Src transformation. Furthermore, c-myc gene knockout fibroblasts are refractory to transformation by v-Src, consistent with a requirement for c-Myc protein in v-Src transformation. In normal NIH 3T3 cells, disruption of Stat3 signaling with dominant-negative Stat3β protein inhibits PDGF-induced mitogenesis in a manner that is reversed by ectopic c-Myc expression. Moreover, inhibition of Src family kinases with the pharmacologic agent, SU6656, blocks Stat3 activation by PDGF. These findings, combined together, delineate the signaling pathway, PDGF → Src → Stat3 → Myc, that is important in normal PDGF-induced mitogenesis and subverted in Src transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic transformation of Belgian endive (Cichorium intybus) and carrot (Daucus carota) by Agrobacterium rhizogenes resulted in a transformed phenotype, including annual flowering. Back-crossing of transformed (R1) endive plants produced a line that retained annual flowering in the absence of the other traits associated with A. rhizogenes transformation. Annualism was correlated with the segregation of a truncated transferred DNA (T-DNA) insertion. During vegetative growth, carbohydrate reserves accumulated normally in these annuals, and they were properly mobilized prior to anthesis. The effects of individual root-inducing left-hand T-DNA genes on flowering were tested in carrot, in which rolC (root locus) was the primary promoter of annualism and rolD caused extreme dwarfism. We discuss the possible adaptive significance of this attenuation of the phenotypic effects of root-inducing left-hand T-DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in a persistent impairment of proliferation when the cells are subcultured at low density and a greatly increased probability of neoplastic transformation in assays for transformation. These properties, along with the large accumulation of age pigment bodies in the confluent cells, are cardinal cellular characteristics of aging in organisms and validate the system as a model of cellular aging. Two cultures labeled alpha and beta were obtained after prolonged confluence; both were dominated by cells that were both slowed in growth at low population density and enhanced in growth capacity at high density, a marker of neoplastic transformation. An experiment was designed to study the reversibility of these age-related properties by serial subculture at low density of the two uncloned cultures and their progeny clones derived from assuredly single cells. Both uncloned cultures had many transformed cells and a reduced growth rate on subculture. Serial subculture resulted in a gradual increase in growth rates of both populations, but a reversal of transformation only in the alpha population. The clones originating from both populations varied in the degree of growth impairment and neoplastic transformation. None of the alpha clones increased in growth rate on low density passage nor did the transformed clones among them revert to normal growth behavior. The fastest growing beta clone was originally slower than the control clone, but caught up to it after four weekly subcultures. The other beta clones retained their reduced growth rates. Four of the five beta clones, including the fastest grower, were transformed, and none reverted on subculture. We conclude that the apparent reversal of impaired growth and transformation in the uncloned parental alpha population resulted from the selective growth at low density of fast growing nontransformed clones. The reversal of impaired growth in the uncloned parental beta population was also the result of selective growth of fast growing clones, but in this case they were highly transformed so no apparent reversal of transformation occurred. The clonal results indicate that neither the impaired growth nor the neoplastic transformation found in aging cells is reversible. We discuss the possible contribution of epigenetic and genetic processes to these irreversible changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major intermediaries in signal transduction pathways are pp60v-sre family tyrosine kinases and heterotrimeric guanine nucleotide-binding proteins. In Rat-1 fibroblasts transformed by the v-src oncogene, endothelin-1 (ET-1)-induced inositol 1,4,5-trisphosphate accumulation is increased 6-fold, without any increases in the numbers of ET-1 receptors or in the response to another agonist, thrombin. This ET-1 hyperresponse can be inhibited by an antibody directed against the carboxyl terminus of the Gq/G11 alpha subunit, suggesting that the Gq/G11 protein couples ET-1 receptors to phospholipase C (PLC). While v-src transformation did not increase the expression of the Gq/G11 alpha subunit, immunoblotting with anti-phosphotyrosine antibodies and phosphoamino acid analysis demonstrated that the Gq/G11 alpha subunit becomes phosphorylated on tyrosine residues in v-src-transformed cells. Moreover, when the Gq/G11 protein was extracted from control and transformed cell lines and reconstituted with exogenous PLC, AIF*4-stimulated Gq/G11 activity was markedly increased in extracts from v-src-transformed cells. Our results demonstrate that the process of v-src transformation can increase the tyrosine phosphorylation state of the Gq/G11 alpha-subunit in intact cells and that the process causes an increase in the Gq/G11 alpha-subunit's ability to stimulate PLC following activation with AIF-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many basic-helix-loop-helix-leucine zipper (b-HLH-LZ) proteins, including the Myc family and non-Myc family, bind a common DNA sequence CACGTG, yet have quite different biological actions. Myc binds this sequence as a heterodimer with Max in the activation of both transcription and transformation. The Myc family members Mad and Mxi1 are known to suppress Myc-induced transcription and transformation and to dimerize with Max to form ternary complexes with the mammalian Sin3 transcriptional corepressor (mSin3). The b-HLH-LZ domain of TFEB, which cannot heterodimerize within the Myc family, does not suppress Myc-induced transcription or transformation. However, transfer of a 25- to 36-aa region from Mad or Mxi1, which interacts with mSin3, to the b-HLH-LZ of TFEB, mediated profound suppression of Myc-induced transcription and transformation. These results suggest that the DNA binding specificities of the Myc family and non-Myc family b-HLH-LZ proteins, in the context of the cellular genes involved in Myc-induced transformation, are shared. The results also demonstrate that targeting mSin3 to CACGTG sites via a non-Myc family DNA binding domain is sufficient to oppose Myc activity in growth regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potent transforming activity of membrane-targeted Raf-1 (Raf-CAAX) suggests that Ras transformation is triggered primarily by a Ras-mediated translocation of Raf-1 to the plasma membrane. However, whereas constitutively activated mutants of Ras [H-Ras(61L) and K-Ras4B(12V)] and Raf-1 (DeltaRaf-22W and Raf-CAAX) caused indistinguishable morphologic and growth (in soft agar and nude mice) transformation of NIH 3T3 fibroblasts, only mutant Ras caused morphologic transformation of RIE-1 rat intestinal cells. Furthermore, only mutant Ras-expressing RIE-1 cells formed colonies in soft agar and developed rapid and progressive tumors in nude mice. We also observed that activated Ras, but not Raf-1, caused transformation of IEC-6 rat intestinal and MCF-10A human mammary epithelial cells. Although both Ras- and DeltaRaf-22W-expressing RIE-1 cells showed elevated Raf-1 and mitogen-activated protein (MAP) kinase activities, only Ras-transformed cells produced secreted factors that promoted RIE-1 transformation. Incubation of untransformed RIE-1 cells in the presence of conditioned medium from Ras-expressing, but not DeltaRaf-22W-expressing, cells caused a rapid and stable morphologic transformation that was indistinguishable from the morphology of Ras-transformed RIE-1 cells. Thus, induction of an autocrine growth mechanism may distinguish the transforming actions of Ras and Raf. In summary, our observations demonstrate that oncogenic Ras activation of the Raf/MAP kinase pathway alone is not sufficient for full tumorigenic transformation of RIE-1 epithelial cells. Thus, Raf-independent signaling events are essential for oncogenic Ras transformation of epithelial cells, but not fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrobacterium tumefaciens transfers a piece of its Ti plasmid DNA (transferred DNA or T-DNA) into plant cells during crown gall tumorigenesis. A. tumefaciens can transfer its T-DNA to a wide variety of hosts, including both dicotyledonous and monocotyledonous plants. We show that the host range of A. tumefaciens can be extended to include Saccharomyces cerevisiae. Additionally, we demonstrate that while T-DNA transfer into S. cerevisiae is very similar to T-DNA transfer into plants, the requirements are not entirely conserved. The Ti plasmid-encoded vir genes of A. tumefaciens that are required for T-DNA transfer into plants are also required for T-DNA transfer into S. cerevisiae, as is vir gene induction. However, mutations in the chromosomal virulence genes of A. tumefaciens involved in attachment to plant cells have no effect on the efficiency of T-DNA transfer into S. cerevisiae. We also demonstrate that transformation efficiency is improved 500-fold by the addition of yeast telomeric sequences within the T-DNA sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum malaria parasites were transformed with plasmids containing P. falciparum or Toxoplasma gondii dihydrofolate reductase-thymidylate synthase (dhfr-ts) coding sequences that confer resistance to pyrimethamine. Under pyrimethamine pressure, transformed parasites were obtained that maintained the transfected plasmids as unrearranged episomes for several weeks. These parasite populations were replaced after 2 to 3 months by parasites that had incorporated the transfected DNA into nuclear chromosomes. Depending upon the particular construct used for transformation, homologous integration was detected in the P. falciparum dhfr-ts locus (chromosome 4) or in hrp3 and hrp2 sequences that were used in the plasmid constructs as gene control regions (chromosomes 13 and 8, respectively). Transformation by homologous integration sets the stage for targeted gene alterations and knock-outs that will advance understanding of P. falciparum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA molecules undergoing transformation into yeast are highly recombinogenic, even when diverged. We reasoned that transformation-associated recombination (TAR) could be employed to clone large DNAs containing repeat sequences, thereby eliminating the need for in vitro enzymatic reactions such as restriction and ligation and reducing the amount of DNA handling. Gently isolated human DNA was transformed directly into yeast spheroplasts along with two genetically marked (M1 and M2) linearized vectors that contained a human Alu sequence at one end and a telomere sequence at the other end (Alu-CEN-M1-TEL and Alu-M2-TEL). Nearly all the M1-selected transformants had yeast artificial chromosomes (YACs) containing human DNA inserts that varied in size from 70 kb to > 600 kb. Approximately half of these had also acquired the unselected M2 marker. The mitotic segregational stability of YACs generated from one (M1) or two (M1 and M2) vector(s) was comparable, suggesting de novo generation of telomeric ends. Since no YACs were isolated when rodent DNAs or a vector lacking an Alu sequence was used, the YACs were most likely the consequence of TAR between the repeat elements on the vector(s) and the human DNA. Using the BLUR13 Alu-containing vector, we demonstrated that human DNA could be efficiently cloned from mouse cells that contained a single human chromosome 16. The distribution of cloned DNAs on chromosome 16 was determined by fluorescence in situ hybridization. We propose that TAR cloning can provide an efficient means for generating YACs from specific chromosomes and subchromosome fragments and that TAR cloning may be useful for isolating families of genes and specific genes from total genome DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leukemogenic tyrosine kinase fusion protein Bcr-Abl activates a Ras-dependent pathway required for transformation. To examine subsequent signal transduction events we measured the effect of Bcr-Abl on two mitogen-activated protein kinase (MAPK) cascades--the extracellular signal-regulated kinase (ERK) pathway and the Jun N-terminal kinase (JNK) pathway. We find that Bcr-Abl primarily activates JNK in fibroblasts and hematopoietic cells. Bcr-Abl enhances JNK function as measured by transcription from Jun responsive promoters and requires Ras, MEK kinase (MAPK/ERK kinase kinase), and JNK to do so. Dominant-negative mutants of c-Jun, which inhibit the endpoint of the JNK pathway, impair Bcr-Abl transforming activity. These findings implicate the JNK pathway in transformation by a human leukemia oncogene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small GTP-binding proteins Rac and Rho are key elements in the signal-transduction pathways respectively controlling the formation of lamellipodia and stress fibers induced by growth factors or oncogenic Ras. We recently reported that Rac function is necessary for Ras transformation and that expression of constitutively activated Rac1 is sufficient to cause malignant transformation. We now show that, although expression of constitutively activated V14-RhoA in Rat 1 fibroblasts does not cause transformation on its own, it strongly cooperates with constitutively active RafCAAX in focus-formation assays in NIH 3T3 cells. Furthermore, dominant-negative N19-RhoA inhibits focus formation by V12-H-Ras and RafCAAX in NIH 3T3 cells, and stable coexpression of N19-RhoA and V12-H-Ras in Rat1 fibroblasts reverts Ras transformation. Interestingly, stress fiber formation is inhibited in V12-H-Ras lines and restored by coexpression of N19-RhoA. We conclude that Rho drives at least two separate pathways, one that induces stress fiber formation and another one that is important for transformation by oncogenic Ras.