960 resultados para Marsha Clark
Resumo:
The Prairie Pothole Region of North America has been modified by agriculture during the past 100 yr, resulting in habitat loss, fragmentation, and degradation that have reduced the abundance and productivity of many wildlife species. The 1985 U.S. Farm Bill provided economic incentives to agriculture that are considered by many to be beneficial to nesting waterfowl and other wildlife. Canada has not experienced an equally comprehensive legislative initiative, which would seem to indicate that benefits to waterfowl in Canada should lag behind those in the United States. However, with the removal of some agricultural subsidies in Canada during the 1990s, the amount of perennial cover in the Canadian prairies increased to levels similar to those of the 1970s. Therefore, it is unclear whether and how the U.S. and Canadian prairies might differ with regard to habitat quality for nesting waterfowl. We used historical and contemporary data to compare temporal trends in duck nest success between the United States and Canada and to assess how mean nest success varied with proportion of cropland and wetland density. The data best supported models with nonlinear temporal trends that varied between the two countries and suggested that mean nest success in Canada declined from its high point in 1930s and remained below the long-term value of 0.16 until the end of the time series in 2005. Mean nest success in the United States also declined from its high point in the 1930s, but increased to above the long-term value of 0.25 during the early 2000s. Mean nest success varied negatively with proportion of cropland in both the United States and Canada. Mean nest success was positively correlated with pond density at Canadian sites, but showed only a weak association with pond density at U.S. sites. All models explained the low proportions of the variation in nest success, suggesting that unmeasured factors such as the abundance and identity of nest predators may have strong effects on nest success. Nonetheless, these results support earlier suggestions that agricultural policy that encourages permanent cover positively influences duck reproductive success. We also found that, for reasons that are not entirely clear, nest success for the same intensity of row cropping was generally higher in the United States than in Canada. Further research is required to elucidate the exact nature of the composition, size, and distribution of permanent cover that coincides with greater average nest success by dabbling ducks in the United States. In addition, the data suggest that the benefits that might accrue from increases in the amount of perennial cover in Canada would be better realized if these efforts are accompanied by strong measures to conserve wetlands.
Resumo:
Digital map products that integrate long-term duck population and land-use data are currently being used to guide conservation program delivery on the Canadian Prairies. However, understanding the inter-relationships between ducks and other grassland bird species would greatly enhance program planning and delivery. We hypothesized that ducks, and Northern Pintail (Anas acuta) in particular, may function as an umbrella guild for the overall breeding habitat quality for other grassland bird species. We compared grassland bird species richness and relative abundance among areas of low, moderate, and high predicted waterfowl breeding densities (i.e., duck density strata) in the southern Missouri Coteau, Saskatchewan. We conducted roadside point counts and delineated habitats within a 400 m radius of each point. The duck high-density stratum supported greater avian species richness and abundance than did the duck low-density stratum. Overall, duck and other grassland bird species richness and abundance were moderately correlated, with all r between 0.37 and 0.69 (all P < 0.05). Although the habitat requirements of Northern Pintail may overlap with those of other grassland endemics, priority grassland bird species richness was only moderately correlated with total pintail abundance in both years, and the abundances of pintail and grassland songbirds listed by the Committee on the Status of Endangered Wildlife in Canada were not correlated. No differences in the mean number of priority grassland species were detected among the strata. Adequate critical habitat for several priority species may not be protected if conservation is focused only in areas of moderate to high wetland density because large tracts of contiguous, dry grassland habitat (e.g., pasture) occur infrequently in high-quality duck habitat.
Resumo:
Bachman’s Sparrow (Peucaea aestivalis), an endemic North American passerine, requires frequent (≤ 3 yr) prescribed fires to maintain preferred habitat conditions. Prescribed fires that coincide with the sparrow’s nesting season are increasingly used to manage sparrow habitat, but concerns exist regarding the effects that nesting-season fires may pose to this understory-dwelling species. Previous studies suggested that threats posed by fires might be lessened by reducing the extent of prescribed fires, thereby providing unburned areas close to the areas where fires eliminate ground-cover vegetation. To assess this hypothesis, we monitored color-marked male Bachman’s Sparrows on 2 sites where the extent of nesting-season fires differed 5-fold (> 70 ha vs. < 15 ha). Monthly survival for males did not differ between the large- and small-extent treatments, and survival rates exceeded 90% for all months except one during the second year of our study when fires were applied later in the season. Male densities also did not differ between treatments, but treatment-by-year interactions pointed to effects relating to the specific time that fires were applied. The distances separating observations of marked males before and after burns were smaller on small-extent treatments in the first year of study but larger on the small-extent treatments in the second year of study. Burn extents also had no consistent effect on postburn reproductive status. The largest extent we examined could have been too small to affect sparrow populations, but responses may also reflect sustainable metapopulation dynamics in a setting where a large sparrow population is maintained at a regional scale (> 100,000 ha) using frequent prescribed fire (≤ 2-yr return intervals). Additional research is needed regarding the effects that nesting-season fires may have on small, isolated populations as well as sites where much larger burn extents (> 100 ha) or longer burn intervals (> 2 yr) are used.
Resumo:
The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawin-sondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.
Resumo:
1 Radar studies of nocturnal insect migration have often found that the migrants tend to form well-defined horizontal layers at a particular altitude. 2 In previous short-term studies, nocturnal layers were usually observed to occur at the same altitude as certain meteorological features, most notably at the altitudes of temperature inversions or nocturnal wind jets. 3 Statistical analyses are presented of four years’ data that compared the presence, sharpness and duration of nocturnal layer profiles (observed using continuously-operating entomological radar) with meteorological variables at typical layer altitudes over the UK. 4 Analysis of these large datasets demonstrated that temperature was the foremost meteorological factor persistently associated with the presence and formation of longer-lasting and sharper layers of migrating insects over southern UK.
Resumo:
The sensitivity of the UK Universities Global Atmospheric Modelling Programme (UGAMP) General Circulation Model (UGCM) to two very different approaches to convective parametrization is described. Comparison is made between a Kuo scheme, which is constrained by large-scale moisture convergence, and a convective-adjustment scheme, which relaxes to observed thermodynamic states. Results from 360-day integrations with perpetual January conditions are used to describe the model's tropical time-mean climate and its variability. Both convection schemes give reasonable simulations of the time-mean climate, but the representation of the main modes of tropical variability is markedly different. The Kuo scheme has much weaker variance, confined to synoptic frequencies near 4 days, and a poor simulation of intraseasonal variability. In contrast, the convective-adjustment scheme has much more transient activity at all time-scales. The various aspects of the two schemes which might explain this difference are discussed. The particular closure on moisture convergence used in this version of the Kuo scheme is identified as being inappropriate.
Resumo:
The Met Office Unified Model is run for a case observed during Intensive Observation Period 18 (IOP18) of the Convective Storms Initiation Project (CSIP). The aims are to identify the physical processes that lead to perturbation growth at the convective scale in response to model-state perturbations and to determine their sensitivity to the character of the perturbations. The case is strongly upper-level forced but with detailed mesoscale/convective-scale evolution that is dependent on smaller-scale processes. Potential temperature is perturbed within the boundary layer. The effects on perturbation growth of both the amplitude and typical scalelength of the perturbations are investigated and perturbations are applied either sequentially (every 30 min throughout the simulation) or at specific times. The direct effects (within one timestep) of the perturbations are to generate propagating Lamb and acoustic waves and produce generally small changes in cloud parameters and convective instability. In exceptional cases a perturbation at a specific gridpoint leads to switching of the diagnosed boundary-layer type or discontinuous changes in convective instability, through the generation or removal of a lid. The indirect effects (during the entire simulation) are changes in the intensity and location of precipitation and in the cloud size distribution. Qualitatively different behaviour is found for strong (1K amplitude) and weak (0.01K amplitude) perturbations, with faster growth after sunrise found only for the weaker perturbations. However, the overall perturbation growth (as measured by the root-mean-square error of accumulated precipitation) reaches similar values at saturation, regardless of the perturbation characterisation.
Resumo:
This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations. Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology. Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.