934 resultados para Mammalian Retina
Resumo:
We report the long-term modulation of K+ channels by cAMP in cultured murine colliculi neurons. A short (1-2 s) application of 8-Br-cAMP induced a long-lasting broadening of the action potential, a loss of after-hyperpolarization, and a reduction in spike accommodation. In agreement with these changes, 8-Br-cAMP produced a long-lasting (2 hr) inhibition of a K+ current. These effects were also observed after a short activation of the pituitary adenylyl cyclase-activating polypeptide, beta-adrenergic, and 5-hydroxytryptamine type 4 (5-HT4) receptors, all known to increase cAMP. A transient activation of the cAMP-dependent protein kinase and a long-lasting inhibition of phosphatases (up to 2 hr) were detected. The blockade of the K+ current resulting from a brief application of 8-Br-cAMP or 5-hydroxytryptamine was prolonged from 2 to 4 hr when protein-serine/threonine phosphatases 1 and 2A were inhibited with 10 nM okadaic acid. The critical steps following the cAMP-dependent protein kinase activation and resulting in a long-term blockade of phosphatases are discussed in this report.
Resumo:
Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription.
Resumo:
To identify genes involved in the regulation of early mammalian development, we have developed a dominant-negative mutant basic-helix-loop-helix (bHLH) protein probe for interaction cloning and have isolated a member of the bHLH family of transcription factors, Meso1. Meso1-E2A heterodimers are capable of binding to oligonucleotide probes that contain a bHLH DNA recognition motif. In mouse embryos, Meso1 is expressed prior to MyoD1 family members. Meso1 expression is first detected at the neural plate stage of development in the paraxial mesoderm of the head and in presomitic mesodermal cells prior to their condensation into somites. Our findings suggest that Meso1 may be a key regulatory gene involved in the early events of vertebrate mesoderm differentiation.
Resumo:
The peptide guanylin, which has recently been isolated from the intestine, is involved in the regulation of fluid secretion in the intestinal epithelium by activation of guanylate cyclase C, the putative guanylin receptor. Since the latter protein is also expressed in airway epithelia, we investigated the lung of three mammalian species for the presence and cellular localization of guanylin by immunoblot (Western blot) analyses and light and electron microscopical immunocytochemistry. In Western blots of bovine, guinea pig, and rat lung extracts, three different guanylin antisera directed against the midportion and against the C terminus of the precursor molecule identified a peptide band corresponding to the apparent molecular mass of guanylin. Localization studies in the lung revealed that guanylin is exclusively confined to nonciliated secretory (Clara) cells in the lining of distal conducting airways. The presence of guanylin in the lung and particularly its specific localization to Clara cells indicate that these cells may play a pivotal role in the local (paracrine) regulation of electrolyte/water transport in airway epithelia.
Resumo:
We report that methoprene and its derivatives can stimulate gene transcription in vertebrates by acting through the retinoic acid-responsive transcription factors, the retinoid X receptors (RXRs). Methoprene is an insect growth regulator in domestic and agricultural use as a pesticide. At least one metabolite of methoprene, methoprene acid, directly binds to RXR and is a transcriptional activator in both insect and mammalian cells. Unlike the endogenous RXR ligand, 9-cis-retinoic acid, this activity is RXR-specific; the methoprene derivatives do not activate the retinoic acid receptor pathway. Methoprene is a juvenile hormone analog that acts to retain juvenile characteristics during insect growth, preventing metamorphosis into an adult, and it has been shown to have ovicidal properties in some insects. Thus, a pesticide that mimics the action of juvenile hormone in insects can also activate a mammalian retinoid-responsive pathway. This finding provides a basis through which the potential bioactivity of substances exposed to the environment may be reexamined and points the way for discovery of new receptor ligands in both insects and vertebrates.
Resumo:
We describe a protein kinase, Shk1, from the fission yeast Schizosaccharomyces pombe, which is structurally related to the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases. We provide genetic evidence for physical and functional interaction between Shk1 and the Cdc42 GTP-binding protein required for normal cell morphology and mating in S. pombe. We further show that expression of the STE20 gene complements the shk1 null mutation and that Shk1 is capable of signaling to the pheromone-responsive mitogen-activated protein kinase cascade in S. cerevisiae. Our results lead us to propose that signaling modules composed of small GTP-binding proteins and protein kinases related to Shk1, Ste20, and p65PAK, are highly conserved in evolution and participate in both cytoskeletal functions and mitogen-activated protein kinase signaling pathways.
Resumo:
One of the membrane guanylyl cyclases (GCs), RetGC, is expressed predominantly in photoreceptors. No extracellular ligand has been described for RetGC, but it is sensitive to activation by a soluble 24-kDa protein (p24) and is inhibited by Ca2+. This enzyme is, therefore, thought to play a role in resynthesizing cGMP for photoreceptor recovery or adaptation. By screening a human retinal cDNA library at low stringency with the cytoplasmic domains from four cyclases, we cloned cDNAs encoding a membrane CG that is most closely related to RetGC. We have named this GC RetGC-2, and now term the initially described RetGC RetGC-1. By in situ hybridization, mRNA encoding RetGC-2 is found only in the outer nuclear layer and inner segments of photoreceptor cells. By using synthetic peptide antiserum specific for each RetGC subtype, RetGC-2 can be distinguished from RetGC-1 as a slightly smaller protein in immunoblots of bovine rod outer segments. Membrane GC activity of recombinant RetGC-2 expressed in human embryonic kidney 293 cells is stimulated by the activator p24 and is inhibited by Ca2+ with an EC50 value of 50-100 nM. Our data reveal a previously unappreciated diversity of photoreceptor GCs.
Resumo:
To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.
Resumo:
Regenerative proliferation occurs in the inner-ear sensory epithelial of warm-blooded vertebrates after insult. To determine how this proliferation is controlled in the mature mammalian inner ear, several growth factors were tested for effects on progenitor-cell division in cultured mouse vestibular sensory epithelia. Cell proliferation was induced in the sensory epithelium by transforming growth factor alpha (TGF-alpha) in a dose-dependent manner. Proliferation was also induced by epidermal growth factor (EGF) when supplemented with insulin, but not EGF alone. These observations suggest that stimulation of the EGF receptors by TGF-alpha binding, or EGF (plus insulin) binding, stimulates cell proliferation in the mature mammalian vestibular sensory epithelium.
Resumo:
The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.
Resumo:
To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.
Resumo:
It has been proposed that the depolarizing responses of chromaticity horizontal cells (C-HCs) to red light depend on a feedback signal from luminosity horizontal cells (L-HCs) to short-wavelength-sensitive cones in the retinas of lower vertebrates. In this regard we studied the C-HCs of the Xenopus retina. C-HCs and L-HCs were identified by physiological criteria and then injected with neurobiotin. The retina then was incubated with peanut agglutinin, which stains red-but not blue-sensitive cones. Electron microscopic examination revealed that L-HCs contact all cone classes, whereas C-HCs contact only blue-sensitive cones. Simultaneous recordings from C-HC/L-HC pairs established that when the L-HC was saturated by a steady bright red light, C-HCs alone responded to a superimposed blue stimulus. In response to red test flashes, the C-HC response was delayed by approximately 30 msec with respect to the L-HC response. Isolated HCs of both subtypes were examined by whole-cell patch clamp. Both responded to kainate with sustained inward currents and to quisqualate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) with desensitizing currents from a negative holding potential; i.e., both have AMPA-type glutamate receptors. gamma-Aminobutyric acid or glycine opened a chloride channel in the L-HC, whereas the C-HC was unresponsive to either inhibitory amino acid. Since glycine has been shown to abolish selectively the depolarizing response of the C-HC, this finding and other pharmacological data strongly implicate the L-HC in the underlying circuit. Moreover, because the C-HC does not respond to gamma-aminobutyric acid, the neurotransmitter of the L-HC, by elimination, a feedback synapse from L-HC to blue cone is the most plausible mechanism for the creation of depolarizing responses in C-HCs.
Resumo:
The retina is derived from a pseudostratified germinal zone in which the relative position of a progenitor cell is believed to determine the position of the progeny aligned in the radial axis. Such a developmental mechanism would ensure that radial arrays of cells which comprise functional units in the mature central nervous system are also clonally related. The present study has tested this hypothesis by using X chromosome-inactivation transgenic mosaic mice. We report that the retina shows a conspicuous distinction for clonally related neuroblasts of different laminar and functional fates: the rod photoreceptor, Müller, and bipolar cells are aligned in the radial axis, whereas the cone photoreceptor, horizontal, amacrine, and ganglion cells are tangentially displaced with respect to them. These results indicate that the dispersion of cell classes across the retinal surface is differentially constrained. Some classes of retinal neuroblast exhibit a significant tangential, as well as radial, component in their dispersion from the germinal zone, whereas others disperse only in the radial dimension. Consequently, the majority of radial columns within the mature retina must be derived from multiple progenitors. Because the cone photoreceptor, horizontal, amacrine, and ganglion cells establish nonrandom matrices in their cellular distributions within the respective retinal layers, tangential dispersion may be the means by which these matrices are constructed.
Resumo:
Purpose. Postnatal exposure to hyperoxia destroys the plexiform layers of the neonatal rat retina, resulting in significant electroretinographic anomalies. The purpose of this study was to identify the mechanisms at the origin of this loss. Methods. Sprague-Dawley (SD) and Long Evans (LE) rats were exposed to hyperoxia from birth to postnatal day (P) 6 or P14 and from P6 to P14, after which rats were euthanatized at P6, P14, or P60. Results. At P60, synaptophysin staining confirmed the lack of functional synaptic terminals in SD (outer plexiform layer [OPL]) and LE (OPL and inner plexiform layer [IPL]) rats. Uneven staining of ON-bipolar cell terminals with mGluR6 suggests that their loss could play a role in OPL thinning. Protein kinase C(PKC)-α and recoverin (rod and cone ON-bipolar cells, respectively) showed a lack of dendritic terminals in the OPL with disorganized axonal projections in the IPL. Although photoreceptor nuclei appeared intact, a decrease in bassoon staining (synaptic ribbon terminals) suggests limited communication to the inner retina. Findings were significantly more pronounced in LE rats. An increase in TUNEL-positive cells was observed in LE (inner nuclear layer [INL] and outer nuclear layer [ONL]) and SD (INL) rats after P0 to P14 exposure (425.3%, 102.2%, and 146.3% greater than control, respectively [P < 0.05]). Conclusions. Results suggest that cell death and synaptic retraction are at the root of OPL thinning. Increased TUNEL-positive cells in the INL confirm that cells die, at least in part, because of apoptosis. These findings propose a previously undescribed mechanism of cell death and synaptic retraction that are likely at the origin of the functional consequences of hyperoxia.
Resumo:
Rotenone is a widely used pesticide and a potent inhibitor of mitochondrial complex I (NADH-quinone reductase) that elicits the degeneration of dopaminergic neurons and thereby the appearance of a parkinsonian syndrome. Here we have addressed the alterations induced by rotenone at the functional, morphological and molecular levels in the retina, including those involving both dopaminergic and non-dopaminergic retinal neurons. Rotenone-treated rats showed abnormalities in equilibrium, postural instability and involuntary movements. In their outer retina we observed a loss of photoreceptors, and a reduced synaptic connectivity between those remaining and their postsynaptic neurons. A dramatic loss of mitochondria was observed in the inner segments, as well as in the axon terminals of photoreceptors. In the inner retina we observed a decrease in the expression of dopaminergic cell molecular markers, including loss of tyrosine hydroxylase immunoreactivity, associated with a reduction of the dopaminergic plexus and cell bodies. An increase in immunoreactivity of AII amacrine cells for parvalbumin, a Ca2+-scavenging protein, was also detected. These abnormalities were accompanied by a decrease in the amplitude of scotopic and photopic a- and b-waves and an increase in the b-wave implicit time, as well as by a lower amplitude and greater latency in oscillatory potentials. These results indicate that rotenone induces loss of vision by promoting photoreceptor cell death and impairment of the dopaminergic retinal system.