973 resultados para MISSING VALUE ESTIMATION
Resumo:
Au cours des deux dernières décennies, la technique d'imagerie arthro-scanner a bénéficié de nombreux progrès technologiques et représente aujourd'hui une excellente alternative à l'imagerie par résonance magnétique (IRM) et / ou arthro-IRM dans l'évaluation des pathologies de la hanche. Cependant, elle reste limitée par l'exposition aux rayonnements ionisants importante. Les techniques de reconstruction itérative (IR) ont récemment été mis en oeuvre avec succès en imagerie ; la littérature montre que l'utilisation ces dernières contribue à réduire la dose d'environ 40 à 55%, comparativement aux protocoles courants utilisant la rétroprojection filtrée (FBP), en scanner de rachis. A notre connaissance, l'utilisation de techniques IR en arthro-scanner de hanche n'a pas été évaluée jusqu'à présent. Le but de notre étude était d'évaluer l'impact de la technique ASIR (GE Healthcare) sur la qualité de l'image objective et subjective en arthro-scanner de hanche, et d'évaluer son potentiel en terme de réduction de dose. Pour cela, trente sept patients examinés par arthro-scanner de hanche ont été randomisés en trois groupes : dose standard (CTDIvol = 38,4 mGy) et deux groupes de dose réduite (CTDIvol = 24,6 ou 15,4 mGy). Les images ont été reconstruites en rétroprojection filtrée (FBP) puis en appliquant différents pourcentages croissants d'ASIR (30, 50, 70 et 90%). Le bruit et le rapport contraste sur bruit (CNR) ont été mesurés. Deux radiologues spécialisés en imagerie musculo-squelettique ont évalué de manière indépendante la qualité de l'image au niveau de plusieurs structures anatomiques en utilisant une échelle de quatre grades. Ils ont également évalué les lésions labrales et du cartilage articulaire. Les résultats révèlent que le bruit augmente (p = 0,0009) et le CNR diminue (p = 0,001) de manière significative lorsque la dose diminue. A l'inverse, le bruit diminue (p = 0,0001) et le contraste sur bruit augmente (p < 0,003) de manière significative lorsque le pourcentage d'ASIR augmente ; on trouve également une augmentation significative des scores de la qualité de l'image pour le labrum, le cartilage, l'os sous-chondral, la qualité de l'image globale (au delà de ASIR 50%), ainsi que le bruit (p < 0,04), et une réduction significative pour l'os trabuculaire et les muscles (p < 0,03). Indépendamment du niveau de dose, il n'y a pas de différence significative pour la détection et la caractérisation des lésions labrales (n=24, p = 1) et des lésions cartilagineuses (n=40, p > 0,89) en fonction du pourcentage d'ASIR. Notre travail a permis de montrer que l'utilisation de plus de 50% d'ASIR permet de reduire de manière significative la dose d'irradiation reçue par le patient lors d'un arthro-scanner de hanche tout en maintenant une qualité d'image diagnostique comparable par rapport à un protocole de dose standard utilisant la rétroprojection filtrée.
Resumo:
BACKGROUND: Age and the Glasgow Coma Scale (GCS) score on admission are considered important predictors of outcome after traumatic brain injury. We investigated the predictive value of the GCS in a large group of patients whose computerised multimodal bedside monitoring data had been collected over the previous 10 years. METHODS: Data from 358 subjects with head injury, collected between 1992 and 2001, were analysed retrospectively. Patients were grouped according to year of admission. Glasgow Outcome Scores (GOS) were determined at six months. Spearman's correlation coefficients between GCS and GOS scores were calculated for each year. RESULTS: On average 34 (SD: 7) patients were monitored every year. We found a significant correlation between the GCS and GOS for the first five years (overall 1992-1996: r = 0.41; p<0.00001; n = 183) and consistent lack of correlations from 1997 onwards (overall 1997-2001: r = 0.091; p = 0.226; n = 175). In contrast, correlations between age and GOS were in both time periods significant and similar (r = -0.24 v r = -0.24; p<0.002). CONCLUSIONS: The admission GCS lost its predictive value for outcome in this group of patients from 1997 onwards. The predictive value of the GCS should be carefully reconsidered when building prognostic models incorporating multimodality monitoring after head injury.
Resumo:
The MDRD (Modification of diet in renal disease) equation enables glomerular filtration rate (GFR) estimation from serum creatinine only. Thus, the laboratory can report an estimated GFR (eGFR) with each serum creatinine assessment, increasing therefore the recognition of renal failure. Predictive performance of MDRD equation is better for GFR < 60 ml/min/1,73 m2. A normal or near-normal renal function is often underestimated by this equation. Overall, MDRD provides more reliable estimations of renal function than the Cockcroft-Gault (C-G) formula, but both lack precision. MDRD is not superior to C-G for drug dosing. Being adjusted to 1,73 m2, MDRD eGFR has to be back adjusted to the patient's body surface area for drug dosing. Besides, C-G has the advantage of a greater simplicity and a longer use.
Resumo:
The age-dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution. A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and energy to learning, however, reduces the resources available for other life-history components. Learning schedules and life history thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: "infants" using IL or oblique SL, "juveniles" implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but horizontal SL does not do so.
Resumo:
Rb-82cardiac PET has been used to non-invasively assess myocardial blood flow (MBF)and myocardial flow reserve (MFR). The impact of MBF and MFR for predictingmajor adverse cardiovascular events (MACE) has not been investigated in aprospective study, which was our aim. MATERIAL AND METHODS: In total, 280patients (65±10y, 36% women) with known or suspected CAD were prospectivelyenrolled. They all underwent both a rest and adenosine stress Rb-82 cardiacPET/CT. Dynamic acquisitions were processed with the FlowQuant 2.1.3 softwareand analyzed semi-quantitatively (SSS, SDS) and quantitatively (MBF, MFR) andreported using the 17-segment AHA model. Patients were stratified based on SDS,stress MBF and MFR and allocated into tertiles. For each group, annualizedevent rates were computed by dividing the number of annualized MACE (cardiacdeath, myocardial infarction, revascularisation or hospitalisation forcardiac-related event) by the sum of individual follow-up periods in years.Outcome were analysed for each group using Kaplan-Meier event-free survivalcurves and compared using the log-rank test. Multivariate analysis wasperformed in a stepwise fashion using Cox proportional hazards regressionmodels (p<0.05 for model inclusion). RESULTS: In a median follow-up of 256days (range 168-440d), 44 MACE were observed. Ischemia (SDS≥2) was observed in95 patients who had higher annualized MACE rate as compared to those without(55% vs. 9.8%, p<0.0001). The group with the lowest MFR tertile (MFR<1.76)had higher MACE rate than the two highest tertiles (51% vs. 9% and 14%,p<0.0001). Similarly, the group with the lowest stress MBF tertile(MBF<1.78mL/min/g) had the highest annualized MACE rate (41% vs. 26% and 6%,p=0.0002). On multivariate analysis, the addition of MFR or stress MBF to SDSsignificantly increased the global χ2 (from 56 to 60, p=0.04; and from56 to 63, p=0.01). The best prognostic power was obtained in a model combiningSDS (p<0.001) and stress MBF (p=0.01). Interestingly, the integration ofstress MBF enhanced risk stratification even in absence of ischemia.CONCLUSIONS: Quantification of MBF or MFR in Rb-82 cardiac PET/CT providesindependent and incremental prognostic information over semi-quantitativeassessment with SDS and is of value for risk stratification.
Resumo:
In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.
Resumo:
Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning.
Resumo:
BACKGROUND: Indocyanine green video-angiography (ICG) is a recent examination technique, its possibilities and limitations as far as intraocular tumours are concerned, haven't been fully explored yet. MATERIAL AND METHODS: We have studied 50 cases of non-pigmented choroidal tumours, including 14 cases of choroidal hemangioma's, 11 cases of posterior uveal metastases and 25 cases of non-pigmented melanoma's. RESULTS: Characteristic images were obtained when examining choroidal hemangioma's and, until a certain point, posterior choroidal metastases. Non pigmented melanoma's on the contrary, presented a great variety of different indocyanine green angiographic pictures. CONCLUSION: Indocyanine green video-angiography (ICG) has a definite value in the differential diagnosis of non-pigmented posterior choroidal tumours.
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
SummaryDiscrete data arise in various research fields, typically when the observations are count data.I propose a robust and efficient parametric procedure for estimation of discrete distributions. The estimation is done in two phases. First, a very robust, but possibly inefficient, estimate of the model parameters is computed and used to indentify outliers. Then the outliers are either removed from the sample or given low weights, and a weighted maximum likelihood estimate (WML) is computed.The weights are determined via an adaptive process such that if the data follow the model, then asymptotically no observation is downweighted.I prove that the final estimator inherits the breakdown point of the initial one, and that its influence function at the model is the same as the influence function of the maximum likelihood estimator, which strongly suggests that it is asymptotically fully efficient.The initial estimator is a minimum disparity estimator (MDE). MDEs can be shown to have full asymptotic efficiency, and some MDEs have very high breakdown points and very low bias under contamination. Several initial estimators are considered, and the performances of the WMLs based on each of them are studied.It results that in a great variety of situations the WML substantially improves the initial estimator, both in terms of finite sample mean square error and in terms of bias under contamination. Besides, the performances of the WML are rather stable under a change of the MDE even if the MDEs have very different behaviors.Two examples of application of the WML to real data are considered. In both of them, the necessity for a robust estimator is clear: the maximum likelihood estimator is badly corrupted by the presence of a few outliers.This procedure is particularly natural in the discrete distribution setting, but could be extended to the continuous case, for which a possible procedure is sketched.RésuméLes données discrètes sont présentes dans différents domaines de recherche, en particulier lorsque les observations sont des comptages.Je propose une méthode paramétrique robuste et efficace pour l'estimation de distributions discrètes. L'estimation est faite en deux phases. Tout d'abord, un estimateur très robuste des paramètres du modèle est calculé, et utilisé pour la détection des données aberrantes (outliers). Cet estimateur n'est pas nécessairement efficace. Ensuite, soit les outliers sont retirés de l'échantillon, soit des faibles poids leur sont attribués, et un estimateur du maximum de vraisemblance pondéré (WML) est calculé.Les poids sont déterminés via un processus adaptif, tel qu'asymptotiquement, si les données suivent le modèle, aucune observation n'est dépondérée.Je prouve que le point de rupture de l'estimateur final est au moins aussi élevé que celui de l'estimateur initial, et que sa fonction d'influence au modèle est la même que celle du maximum de vraisemblance, ce qui suggère que cet estimateur est pleinement efficace asymptotiquement.L'estimateur initial est un estimateur de disparité minimale (MDE). Les MDE sont asymptotiquement pleinement efficaces, et certains d'entre eux ont un point de rupture très élevé et un très faible biais sous contamination. J'étudie les performances du WML basé sur différents MDEs.Le résultat est que dans une grande variété de situations le WML améliore largement les performances de l'estimateur initial, autant en terme du carré moyen de l'erreur que du biais sous contamination. De plus, les performances du WML restent assez stables lorsqu'on change l'estimateur initial, même si les différents MDEs ont des comportements très différents.Je considère deux exemples d'application du WML à des données réelles, où la nécessité d'un estimateur robuste est manifeste : l'estimateur du maximum de vraisemblance est fortement corrompu par la présence de quelques outliers.La méthode proposée est particulièrement naturelle dans le cadre des distributions discrètes, mais pourrait être étendue au cas continu.
Resumo:
Patients with status epilepticus that proves refractory to anesthetic agents represent a daunting challenge for treating clinicians. Animal data support the neuroprotective action of brain hypothermia, and its efficacy in status epilepticus models. This approach, targeting a core temperature of about 33°C for at least 24 hours together with pharmacological sedation, has been described in adults and children. However, although relatively safe if concomitant barbiturates are avoided, it seems that mild hypothermia rarely allows a sustained control of ongoing status epilepticus, since seizures tend to recur in normothermia. Conversely, mild hypothermia has a high-evidence level and is increasingly used in postanoxic encephalopathy, both in newborns and adults. Due to the paucity of available clinical data, prospective studies are needed to assess the value of hypothermia in status epilepticus.
Resumo:
Missing persons summary
Resumo:
Missing persons summary
Resumo:
Missing Persons summary