930 resultados para MISSENSE MUTATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The xeroderma pigmentosum group D (XPD) protein has a dual function, both in nucleotide excision repair of DNA damage and in basal transcription. Mutations in the XPD gene can result in three distinct clinical phenotypes, XP, trichothiodystrophy (TTD), and XP with Cockayne syndrome. To determine if the clinical phenotypes of XP and TTD can be attributed to the sites of the mutations, we have identified the mutations in a large group of TTD and XP-D patients. Most sites of mutations differed between XP and TTD, but there are three sites at which the same mutation is found in XP and TTD patients. Since the corresponding patients were all compound heterozygotes with different mutations in the two alleles, the alleles were tested separately in a yeast complementation assay. The mutations which are found in both XP and TTD patients behaved as null alleles, suggesting that the disease phenotype was determined by the other allele. If we eliminate the null mutations, the remaining mutagenic pattern is consistent with the site of the mutation determining the phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disorder resulting from mutations in an X-linked gene, PIG-A, that encodes an enzyme required for the first step in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. PIG-A mutations result in absent or decreased cell surface expression of all GPI-anchored proteins. Although many of the clinical manifestations (e.g., hemolytic anemia) of the disease can be explained by a deficiency of GPI-anchored complement regulatory proteins such as CD59 and CD55, it is unclear why the PNH clone dominates hematopoiesis and why it is prone to evolve into acute leukemia. We found that PIG-A mutations confer a survival advantage by making cells relatively resistant to apoptotic death. When placed in serum-free medium, granulocytes and affected CD34+ (CD59−) cells from PNH patients survived longer than their normal counterparts. PNH cells were also relatively resistant to apoptosis induced by ionizing irradiation. Replacement of the normal PIG-A gene in PNH cell lines reversed the cellular resistance to apoptosis. Inhibited apoptosis resulting from PIG-A mutations appears to be the principle mechanism by which PNH cells maintain a growth advantage over normal progenitors and could play a role in the propensity of this disease to transform into more aggressive hematologic disorders. These data also suggest that GPI anchors are important in regulating apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the effects of inactivation of the p53 tumor suppressor gene on the incidence of apoptotic cell death in two stages of the adenoma-to-carcinoma progression in the intestine: in early adenomas where p53 mutations are rare and in highly dysplastic adenomas where loss of p53 occurs frequently. Homozygosity for an inactivating germ-line mutation of p53 had no effect on the incidence or the rate of progression of ApcMin/+-induced adenomas in mice and also did not affect the frequency of apoptosis in the cells of these adenomas. To examine the effect of p53 loss on apoptosis in late-stage adenomas, we compared the incidence of apoptotic cell death before and after the appearance of highly dysplastic cells in human colonic adenomas. The appearance of highly dysplastic cells, which usually coincides during colon tumor progression with loss of heterozygosity at the p53 locus, did not correlate with a reduction in the incidence of apoptosis. These studies suggest that p53 is only one of the genes that determine the incidence of apoptotic in colon carcinomas and that wild-type p53 retards the progression of many benign colonic adenoma to malignant carcinomas by mechanism(s) other than the promotion of apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe mutations of three genes in Arabidopsis thaliana—extra cotyledon1 (xtc1), extra cotyledon2 (xtc2), and altered meristem programming1 (amp1)—that transform leaves into cotyledons. In all three of these mutations, this transformation is associated with a change in the timing of events in embryogenesis. xtc1 and xtc2 delay the morphogenesis of the embryo proper at the globular-to-heart transition but permit the shoot apex to develop to an unusually advanced stage late in embryogenesis. Both mutations have little or no effect on seed maturation and do not affect the viability of the shoot or the rate of leaf initiation after germination. amp1 perturbs the pattern of cell division at an early globular stage, dramatically increases the size of the shoot apex and, like xtc1 and xtc2, produces enlarged leaf primordia during seed development. These unusual phenotypes suggest that these genes play important regulatory roles in embryogenesis and demonstrate that the development of the shoot apical meristem and the development of the embryo proper are regulated by independent processes that must be temporally coordinated to ensure normal organ identity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, mutations in the Met tyrosine kinase receptor have been identified in both hereditary and sporadic forms of papillary renal carcinoma. We have introduced the corresponding mutations into the met cDNA and examined the effect of each mutation in biochemical and biological assays. We find that the Met mutants exhibit increased levels of tyrosine phosphorylation and enhanced kinase activity toward an exogenous substrate when compared with wild-type Met. Moreover, NIH 3T3 cells expressing mutant Met molecules form foci in vitro and are tumorigenic in nude mice. Enzymatic and biological differences were evident among the various mutants examined, and the somatic mutations were generally more active than those of germ-line origin. A strong correlation between the enzymatic and biological activity of the mutants was observed, indicating that tumorigenesis by Met is quantitatively related to its level of activation. These results demonstrate that the Met mutants originally identified in human papillary renal carcinoma are oncogenic and thus are likely to play a determinant role in this disease, and these results raise the possibility that activating Met mutations also may contribute to other human malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The factors that regulate the perpetuation and invasiveness of rheumatoid synovitis have been the subject of considerable inquiry, and the possibility that nonimmunologic defects can contribute to the disease has not been rigorously addressed. Using a mismatch detection system, we report that synovial tissue from the joints of severe chronic rheumatoid arthritis patients contain mutant p53 transcripts, which were not found in skin samples from the same patients or in joints of patients with osteoarthritis. Mutant p53 transcripts also were identified in synoviocytes cultured from rheumatoid joints. The predicted amino acid substitutions in p53 were identical or similar to those commonly observed in a variety of tumors and might influence growth and survival of rheumatoid synoviocytes. Thus, mutations in p53 and subsequent selection of the mutant cells may occur in the joints of patients as a consequence of inflammation and contribute to the pathogenesis of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the molecular basis for the clinical phenotype of incomplete penetrance of familial retinoblastoma, we have examined the functional properties of three RB mutations identified in the germ line of five different families with low penetrance. RB mutants isolated from common adult cancers and from classic familial retinoblastoma (designated as classic RB mutations) are unstable and generally do not localize to the nucleus, do not undergo cyclin-dependent kinase (cdk)-mediated hyperphosphorylation, show absent protein “pocket” binding activity, and do not suppress colony growth of RB(−) cells. In contrast, two low-penetrant alleles (661W and “deletion of codon 480”) retained the ability to localize to the nucleus, showed normal cdk-mediated hyperphosphorylation in vivo, exhibited a binding pattern to simian virus 40 large T antigen using a quantitative yeast two-hybrid assay that was intermediate between classic mutants (null) and wild-type RB, and had absent E2F1 binding in vitro. A third, low-penetrant allele, “deletion of RB exon 4,” showed minimal hyperphosphorylation in vivo but demonstrated detectable E2F1 binding in vitro. In addition, each low-penetrant RB mutant retained the ability to suppress colony growth of RB(−) tumor cells. These findings suggest two categories of mutant, low-penetrant RB alleles. Class 1 alleles correspond to promoter mutations, which are believed to result in reduced or deregulated levels of wild-type RB protein, whereas class 2 alleles result in mutant proteins that retain partial activity. Characterization of the different subtypes of class 2 low-penetrant genes may help to define more precisely functional domains within the RB product required for tumor suppression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific-locus test (SLT) detects new mutants among mice heterozygous for seven recessive visible markers. Spontaneous mutations can be manifested not only as singleton whole-body mutants in controls (for which we report new data), but as mosaics—either visible (manifesting mottled coat color) in the scored generation (G2) or masked, among the wild-type parental generation (G1). Masked G1 mosaics reveal themselves by producing clusters of whole-body mutants in G2. We provide evidence that most, if not all, mosaics detected in the SLT (both radiation and control progenies) result from a single-strand spontaneous mutation subsequent to the last premeiotic mitosis and before the first postmeiotic one of a parental genome—the “perigametic interval.” Such events in the genomes of the G1 and G0 result, respectively, in visible and masked 50:50 mosaics. Per cell cycle, the spontaneous mutation rate in the perigametic interval is much higher than that in pregamete mitotic divisions. A clearly different locus spectrum further supports the hypothesis of different origin, and casts further doubt on the validity of the doubling-dose risk-estimation method. Because mosaics cannot have arisen in mitotic germ cells, and are not induced by radiation exposure in the perigametic interval, they should not be included in calculations of radiation-induced germ-line mutation rates. For per-generation calculations, inclusion of mosaics yields a spontaneous frequency 1.7 times that calculated from singletons alone for mutations contributed by males; including both sexes, the multiple is 2.2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The congenital long QT syndrome (LQTS) is an inherited disorder characterized by a prolonged cardiac action potential. This delay in cellular repolarization can lead to potentially fatal arrhythmias. One form of LQTS (LQT3) has been linked to the human cardiac voltage-gated sodium channel gene (SCN5A). Three distinct mutations have been identified in the sodium channel gene. The biophysical and functional characteristics of each of these mutant channels were determined by heterologous expression of a recombinant human heart sodium channel in a mammalian cell line. Each mutation caused a sustained, non-inactivating sodium current amounting to a few percent of the peak inward sodium current, observable during long (>50 msec) depolarizations. The voltage dependence and rate of inactivation were altered, and the rate of recovery from inactivation was changed compared with wild-type channels. These mutations in diverse regions of the ion channel protein, all produced a common defect in channel gating that can cause the long QT phenotype. The sustained inward current caused by these mutations will prolong the action potential. Furthermore, they may create conditions that promote arrhythmias due to prolonged depolarization and the altered recovery from inactivation. These results provide insights for successful intervention in the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Candida albicans genes, CST20 and HST7, were cloned by their ability to suppress the mating defects of Saccharomyces cerevisiae mutants in the ste20 and ste7 genes, which code for elements of the mating mitogen-activated protein (MAP) kinase pathway. These Candida genes are both structural and functional homologs of the cognate Saccharomyces genes. The pattern of suppression in Saccharomyces is related to their presumptive position in the MAP kinase cascade. Null alleles of these genes were constructed in Candida. The Candida homozygous null mutants are defective in hyphal formation on some media, but are still induced to form hyphae by serum, showing that serum induction of hyphae is independent of the MAP kinase cascade. The Candida heterozygotes CST20/cst20 and HST7/hst7 are also defective in hyphal formation. This lack of dominance of the wild-type allele suggests that gene dosage is important in Candida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRCA2 mutations predispose carriers mainly to breast cancer. The vast majority of BRCA2 mutations are predicted to result in a truncated protein product. The smallest known cancer-associated deletion removes from the C terminus only 224 of the 3,418 residues constituting BRCA2, suggesting that these terminal amino acids are crucial for BRCA2 function. A series of green fluorescent protein (GFP)-tagged BRCA2 deletion mutants revealed that nuclear localization depends on two nuclear localization signals that reside within the final 156 residues of BRCA2. Consistent with this observation, an endogenous truncated BRCA2 mutant (6174delT) was found to be cytoplasmic. Together, these studies provide a simple explanation for why the vast majority of BRCA2 mutants are nonfunctional: they do not translocate into the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many viruses regulate protein synthesis by −1 ribosomal frameshifting using an RNA pseudoknot. Frameshifting is vital for viral reproduction. Using the information gained from the recent high-resolution crystal structure of the beet western yellow virus pseudoknot, a systematic mutational analysis has been carried out in vitro and in vivo. We find that specific nucleotide tertiary interactions at the junction between the two stems of the pseudoknot are crucial. A triplex is found between stem 1 and loop 2, and triplex interactions are required for frameshifting function. For some mutations, loss of one hydrogen bond is sufficient to abolish frameshifting. Furthermore, mutations near the 5′ end of the pseudoknot can increase frameshifting by nearly 300%, possibly by modifying ribosomal contacts. It is likely that the selection of suitable mutations can thus allow viruses to adjust frameshifting efficiencies and thereby regulate protein synthesis in response to environmental change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methylation is an important regulator of genetic information in species ranging from bacteria to humans. DNA methylation appears to be critical for mammalian development because mice nullizygous for a targeted disruption of the DNMT1 DNA methyltransferase die at an early embryonic stage. No DNA methyltransferase mutations have been reported in humans until now. We describe here the first example of naturally occurring mutations in a mammalian DNA methyltransferase gene. These mutations occur in patients with a rare autosomal recessive disorder, which is termed the ICF syndrome, for immunodeficiency, centromeric instability, and facial anomalies. Centromeric instability of chromosomes 1, 9, and 16 is associated with abnormal hypomethylation of CpG sites in their pericentromeric satellite regions. We are able to complement this hypomethylation defect by somatic cell fusion to Chinese hamster ovary cells, suggesting that the ICF gene is conserved in the hamster and promotes de novo methylation. ICF has been localized to a 9-centimorgan region of chromosome 20 by homozygosity mapping. By searching for homologies to known DNA methyltransferases, we identified a genomic sequence in the ICF region that contains the homologue of the mouse Dnmt3b methyltransferase gene. Using the human sequence to screen ICF kindreds, we discovered mutations in four patients from three families. Mutations include two missense substitutions and a 3-aa insertion resulting from the creation of a novel 3′ splice acceptor. None of the mutations were found in over 200 normal chromosomes. We conclude that mutations in the DNMT3B are responsible for the ICF syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type IV pili of Neisseria gonorrhoeae, the Gram-negative etiologic agent of gonorrhea, facilitate colonization of the human host. Gonococcal PilT, a protein belonging to a large family of molecules sharing a highly conserved nucleotide binding domain motif, has been shown to be dispensable for organelle biogenesis but essential for twitching motility and competence for genetic transformation. Here, we show that the defect in pilus biogenesis resulting from mutations in the pilC gene, encoding a putative pilus-associated adhesin for human tissue, can be suppressed by the absence of functional PilT. These data conclusively demonstrate that PilT influences the Type IV pilus biogenesis pathway and strongly suggest that organelle expression is a dynamic process. In addition, these findings imply that PilT antagonizes the process of organelle biogenesis and provide the basis for a model for how the counteractive roles of PilT and PilC might relate mechanistically to the phenomenon of twitching motility.