994 resultados para MESENTERIC RESISTANCE ARTERY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, which has been done in Hormoz larve Hatchery at Kohestak in Minab at 1385, the efficiency of Ergosen and Vibromax vaccine and the effect of them on growth factors such as total length, Carapase, dry weight and the number of upper mordents of rostrum and survival of the stages of larvae and post larvae of Indian white shrimp was studied. Thus in order to comparison the effects of Vibromax and Ergosen, each of them separately, in one treatment, and in another simultaneously with one control treatment was used. Vaccination against larvae shrimps was done through Artemia. This study used four treatments with three replicates in a completely randomized design and comparison of means was done through Duncan test. Breeding larvae and post larvae of Indian white shrimp from zoa I stage to PL 15 was done in 20 litter plastic buckets. Present results indicated that the highest amount of growth and survival factors in larvae stage (from zoa to PL1), and also in stages of PL5 and PL15, in the treatment of Ergoson effect + vaccine and it was with a little difference from that treatment of Ergoson effect which was in high significance difference in regard to control treatment at α<0.01 level and treatment of vaccine effect and control treatment at α<0.01 level often have no significant difference. This research used environmental stress tests to study the quality of post larvae under experiment. Studying in this field showed that feeding vaccine to larvae of Indian shrimps which was done through Artemia nauplii enrichment ,and ergosen , in treatment of ergosen vaccine lead to more resistance of post larvaes against salinity stress tests and formalin .This case was observed in every three stages ,so that in stress formalin test 100 parts per million and also 10 and 20 salinity parts in thousands the most survival was observed in treatment of Ergosan effect+vaccine and after that in treatment of Ergoson effect and with a little difference in treatment of vaccine effect. Of course this case, in treatment of Ergoson effect + vaccine due to the synergistic properties vaccine with Ergoson was more than to other treatments, while every three treatments, in most stages had significant difference toward control treatment at α<0.01 level and the control treatment because of not having Ergoson and nauplii artemia with vaccine, having the least survival rate in this stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experiment was conducted to investigate the effect of using n-3 HUFA and Vitamin C enriched Artemia urmiana Nauplii Five difference treament were tested: for Caspian salmon (Salmo trutta caspius) larvae compare with artificial food in five treatment: (1) Artificial food, (2) Newly hatched Artemia (3) n-3 HUFA enriched Artemia (4) n-3 HUFA + 10% Ascorbyl Palmitate enriched Artemia (5) n-3 HUFA+20% Ascorbyl palmitate enriched Artemia during 15 days then all treatment were fed with artificial food during 20 days. In days of 15, larvae fed with newly hatched Artemia didn’t show significant difference of growth rate and survival compared to larvae fed with n-3 HUFA and Vitamn C enriched live food (p<0.05), However all treatment which fed live food have better growth rate and survival compred to larvae fed artificial food. Larvae fed with enriched Artemia with n-3 HUFA + 20% Ascorbyl palmitate has best result of temperature resistance at 26'C and 28'C. There is not significant difference between treatment (1) and (2), (3) and in this manner between (2), (3) and (4), (5) (P>0.05). In days of 35, larvae fed n-3 HUFA + 10% and 20% Ascorbyl pamlitate show better wet weight and dry weight compared to other treatment (P<0.05). Larvae fed n-3 HUFA Artemia showed significant difference compared to treatment (1) and (2), However there is not significant difference between treatment (1) and (2). Larvae fed artificial food show less and significant difference of survival compared to other treatment (P<0.05). Larvae fed artificial food show least of temperature resistance at 26'C and 28'C , However, there is not significant difference between all treatment (P<0.05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A measurement system for magnetic fields or electric currents uses a single-core fluxgate, magneto-inductive or magneto-impedance device driven from a radio frequency excitation source. Flux nulling feedback circuitry is provided to maintain the core of the sensor at substantially zero net flux and improve the linearity and dynamic response of the sensor system. A high pass filter is provided for reducing the dc effects of the ohmic resistance of the coil and lead wires on the effectiveness of the flux nulling feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low specific on-resistance (R-{{\rm on}, {\rm sp}}) integrable silicon-on-insulator (SOI) MOSFET is proposed, and its mechanism is investigated by simulation. The SOI MOSFET features double trenches and dual gates (DTDG SOI): an oxide trench in the drift region, a buried gate inset in the oxide trench, and another trench gate (TG) extended to a buried oxide layer. First, the dual gates form dual conduction channels, and the extended gate widens the vertical conduction area; both of which sharply reduce R-{{\rm on}, {\rm sp}}. Second, the oxide trench folds the drift region in the vertical direction, resulting in a reduced device pitch and R-{{\rm on}, {\rm sp}}. Third, the oxide trench causes multidirectional depletion. This not only enhances the reduced surface field effect and thus reshapes the electric field distribution but also increases the drift doping concentration, leading to a reduced R-{{\rm on}, {\rm sp}} and an improved breakdown voltage (BV). Compared with a conventional SOI lateral Double-diffused metal oxide semiconductor (LDMOS), the DTDG MOSFET increases BV from 39 to 92 V at the same cell pitch or decreases R-{{\rm on}, { \rm sp}} by 77% at the same BV by simulation. Finally, the TG extended synchronously acts as an isolation trench between the high/low-voltage regions in a high-voltage integrated circuit, saving the chip area and simplifying the isolation process. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assessment of the underwater blast resistance of sandwich beams with a prismatic Y-truss core is presented, utilizing three-dimensional finite element calculations. Results show a significant performance benefit for sandwich construction when compared to a monolithic plate of the same mass when the sandwich core combines high shear strength with low compressive strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force-indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force-indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force-indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force-indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling-experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous in-vitro studies have established that cells react to their physical environment and to applied mechanical loading. However, the mechanisms underlying such phenomena are poorly understood. Previous modelling of cell compression considered the cell as a passive homogenous material, requiring an artificial increase in the stiffness of spread cells to replicate experimentally measured forces. In this study, we implement a fully 3D active constitutive formulation that predicts the distribution, remodelling, and contractile behaviour of the cytoskeleton. Simulations reveal that polarised and axisymmetric spread cells contain stress fibres which form dominant bundles that are stretched during compression. These dominant fibres exert tension; causing an increase in computed compression forces compared to round cells. In contrast, fewer stress fibres are computed for round cells and a lower resistance to compression is predicted. The effect of different levels of cellular contractility associated with different cell phenotypes is also investigated. Highly contractile cells form more dominant circumferential stress fibres and hence provide greater resistance to compression. Computed predictions correlate strongly with published experimentally observed trends of compression resistance as a function of cellular contractility and offer an insight into the link between cell geometry, stress fibre distribution and contractility, and cell deformability. Importantly, it is possible to capture the behaviour of both round and spread cells using a given, unchanged set of material parameters for each cell type. Finally, it is demonstrated that stress distributions in the cell cytoplasm and nucleus computed using the active formulation differ significantly from those computed using passive material models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect of mode-localization that arises from structural asymmetry induced by manufacturing tolerances in mechanically coupled, electrically transduced Si MEMS resonators. We demonstrate that in the case of such mechanically coupled resonators, the achievable series motional resistance (R x) is dependent not only on the quality factor (Q) but also on the variations in the eigenvector of the chosen mode of vibration induced by mode localization due to manufacturing tolerances during the fabrication process. We study this effect of mode-localization both theoretically and experimentally in two pairs of coupled double-ended tuning fork resonators with different levels of initial structural asymmetry. The measured series R x is minimal when the system is close to perfect symmetry and any deviation from structural symmetry induced by fabrication tolerances leads to a degradation in the effective R x. Mechanical tuning experiments of the stiffness of one of the coupled resonators was also conducted to study variations in R x as a function of structural asymmetry within the system, the results of which demonstrated consistent variations in motional resistance with predictions. © 2012 IEEE.