975 resultados para MEDITERRANEAN CLIMATE
Resumo:
(263 page document)
Resumo:
Table of Contents [pdf, 0.07 Mb] Executive Summary [pdf, 0.05 Mb] Report of the 2000 BASS Workshop on The Development of a conceptual model of the Subarctic Pacific basin ecosystems [pdf, 0.71 Mb] Report of the 2000 MODEL Workshop on Strategies for coupling higher and lower trophic level marine ecosystem models [pdf, 3.62 Mb] Report of the 2000 MONITOR Workshop on Progress in monitoring the North Pacific [pdf, 1.21 Mb] Report of the 2000 REX Workshop on Trends in herring populations and trophodynamics [pdf, 4.22 Mb] Report of the 2001 BASS/MODEL Workshop on Higher trophic level modeling [pdf, 0.29 Mb] (Document pdf contains 119 pages)
Resumo:
Table of Contents [pdf, 0.11 Mb] Executive Summary [pdf, 0.07 Mb] MODEL Task Team Workshop Report Final Report of the International Workshop to Develop a Prototype Lower Trophic Level Ecosystem Model for Comparison of Different Marine Ecosystems in the North Pacific [pdf, 11.64 Mb] Report of the 1999 MONITOR Task Team Workshop [pdf, 0.32 Mb] Report of the 1999 REX Task Team Workshop Herring and Euphausiid population dynamics Douglas E. Hay and Bruce McCarter Spatial, temporal and life-stage variation in herring diets in British Columbia [pdf, 0.10 Mb] Augustus J. Paul and J. M. Paul Over winter changes in herring from Prince William Sound, Alaska [pdf, 0.08 Mb] N. G. Chupisheva Qualitative texture characteristic of herring (Clupea pallasi pallasi) pre-larvae developed from the natural and artificial spawning-grounds in Severnaya Bay (Peter the Great Bay) [pdf, 0.07 Mb] Gordon A. McFarlane, Richard J. Beamish and Jake SchweigertPacific herring: Common factors have opposite impacts in adjacent ecosystems [pdf, 0.15 Mb] Tokimasa Kobayashi, Keizou Yabuki, Masayoshi Sasaki and Jun-Ichi Kodama Long-term fluctuation of the catch of Pacific herring in Northern Japan [pdf, 0.39 Mb] Jacqueline M. O’Connell Holocene fish remains from Saanich Inlet, British Columbia, Canada [pdf, 0.40 Mb] Elsa R. Ivshina and Irina Y. Bragina On relationship between crustacean zooplankton (Euphausiidae and Copepods) and Sakhalin-Hokkaido herring (Tatar Strait, Sea of Japan) [pdf, 0.14 Mb] Stein Kaartvbeedt Fish predation on krill and krill antipredator behaviour [pdf, 0.08 Mb] Nikolai I. Naumenko Euphausiids and western Bering Sea herring feeding [pdf, 0.07 Mb] David M. Checkley, Jr. Interactions Between Fish and Euphausiids and Potential Relations to Climate and Recruitment [pdf, 0.08 Mb] Vladimir I. Radchenko and Elena P. Dulepova Shall we expect the Korf-Karaginsky herring migrations into the offshore western Bering Sea? [pdf, 0.75 Mb] Young Shil Kang Euphausiids in the Korean waters and its relationship with major fish resources [pdf, 0.29 Mb] William T. Peterson, Leah Feinberg and Julie Keister Ecological Zonation of euphausiids off central Oregon [pdf, 0.11 Mb] Scott M. Rumsey Environmentally forced variability in larval development and stage-structure: Implications for the recruitment of Euphausia pacifica (Hansen) in the Southern California Bight [pdf, 3.26 Mb] Scott M. Rumsey Inverse modelling of developmental parameters in Euphausia pacifica: The relative importance of spawning history and environmental forcing to larval stage-frequency distributions [pdf, 98.79 Mb] Michio J. Kishi, Hitoshi Motono & Kohji Asahi An ecosystem model with zooplankton vertical migration focused on Oyashio region [pdf, 33.32 Mb] PICES-GLOBEC Implementation Panel on Climate Change and Carrying Capacity Program Executive Committee and Task Team List [pdf, 0.05 Mb] (Document pdf contains 142 pages)
Resumo:
This volume summarizes the results of three workshops organized by the PICES-GLOBEC Climate Change and Carrying Capacity Program that were held just prior to the PICES Seventh Annual Meeting in Fairbanks, Alaska, in October 1998. These workshops represent the efforts of the REX, MODEL, and MONITOR Task Teams to integrate the results of national GLOBEC and GLOBEC-like programs to arrive at a better understanding of the ways in which climate change affects North Pacific ecosystems. (PDF contains 91 pages)
Resumo:
(PDF contains 53 pages)
Resumo:
Describes the PICES-GLOBEC International Program on Climate Change and Carrying Capacity (PDF contains 60 pages)
Resumo:
Foreword [pdf, < 0.1 MB] Acknowledgements PHASE 1 [pdf, 0.2 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (July 19–20, 2007, Seattle, U.S.A.) Background Links to Other Programs Workshop Format Session I. Status of climate change scenarios in the PICES region Session II. What are the expected impacts of climate change on regional oceanography and what are some scenarios for these drivers for the next 10 years? Session III. Recruitment forecasting Session IV. What models are out there? How is climate linked to the model? Session V. Assumptions regarding future fishing scenarios and enhancement activities Session VI Where do we go from here? References Appendix 1.1 List of Participants PHASE 2 [pdf, 0.7 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (October 30, 2007, Victoria, Canada) Background Workshop Agenda Forecast Feasibility Format of Information Modeling Approaches Coupled bio-physical models Stock assessment projection models Comparative approaches Similarities in Data Requests Opportunities for Coordination with Other PICES Groups and International Efforts BACKGROUND REPORTS PREPARED FOR THE PHASE 2 WORKSHOP Northern California Current (U.S.) groundfish production by Melissa Haltuch Changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions by Michael J. Schirripa Northern California Current (British Columbia) Pacific cod (Gadus macrocephalus) production by Caihong Fu and Richard Beamish Northern California Current (British Columbia) sablefish (Anoplopoma fimbria) production by Richard Beamish Northern California Current (British Columbia) pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon production by Richard Beamish Northern California Current (British Columbia) ocean shrimp (Pandalus jordani) production by Caihong Fu Alaska salmon production by Anne Hollowed U.S. walleye pollock (Theragra chalcogramma) production in the eastern Bering Sea and Gulf of Alaska by Kevin Bailey and Anne Hollowed U.S. groundfish production in the eastern Bering Sea by Tom Wilderbuer U.S. crab production in the eastern Bering Sea by Gordon H. Kruse Forecasting Japanese commercially exploited species by Shin-ichi Ito, Kazuaki Tadokoro and Yasuhiro Yamanka Russian fish production in the Japan/East Sea by Yury Zuenko, Vladimir Nuzhdin and Natalia Dolganova Chum salmon (Oncorhynchus keta) production in Korea by Sukyung Kang, Suam Kim and Hyunju Seo Jack mackerel (Trachurus japonicus) production in Korea by Jae Bong Lee and Chang-Ik Zhang Chub mackerel (Scomber japonicus) production in Korea by Jae Bong Lee, Sukyung Kang, Suam Kim, Chang-Ik Zhang and Jin Yeong Kim References Appendix 2.1 List of Participants PHASE 3 [pdf, < 0.1 MB] Summary of the PICES Workshop on Linking Global Climate Model Output to (a) Trends in Commercial Species Productivity and (b) Changes in Broader Biological Communities in the World’s Oceans (May 18, 2008, Gijón, Spain) Appendix 3.1 List of Participants Appendix 3.2 Workshop Agenda (Document contains 101 pages)
Resumo:
Water bodies located at 34º 58' S, 62º 58' W formed after 1980 by 30 % increasing rainfall during the last half century, were colonized by ten fish species which are a subset of the commonest species living in the pampasic lagunas. These new populations imply a displacement of the West of Pampasian fishes to areas of the western basins previously lacking fish.
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
Executive Summary: The marine environment plays a critical role in the amount of carbon dioxide (CO2) that remains within Earth’s atmosphere, but has not received as much attention as the terrestrial environment when it comes to climate change discussions, programs, and plans for action. It is now apparent that the oceans have begun to reach a state of CO2 saturation, no longer maintaining the “steady-state” carbon cycle that existed prior to the Industrial Revolution. The increasing amount of CO2 present within the oceans and the atmosphere has an effect on climate and a cascading effect on the marine environment. Potential physical effects of climate change within the marine environment, including ocean acidification, changes in wind and upwelling regimes, increasing global sea surface temperatures, and sea level rise, can lead to dramatic, fundamental changes within marine and coastal ecosystems. Altered ecosystems can result in changing coastal economies through a reduction in marine ecosystem services such as commercial fish stocks and coastal tourism. Local impacts from climate change should be a front line issue for natural resource managers, but they often feel too overwhelmed by the magnitude of this issue to begin to take action. They may not feel they have the time, funding, or staff to take on a challenge as large as climate change and continue to not act as a result. Already, natural resource managers work to balance the needs of humans and the economy with ecosystem biodiversity and resilience. Responsible decisions are made each day that consider a wide variety of stakeholders, including community members, agencies, non-profit organizations, and business/industry. The issue of climate change must be approached as a collaborative effort, one that natural resource managers can facilitate by balancing human demands with healthy ecosystem function through research and monitoring, education and outreach, and policy reform. The Scientific Expert Group on Climate Change in their 2007 report titled, “Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable” charged governments around the world with developing strategies to “adapt to ongoing and future changes in climate change by integrating the implications of climate change into resource management and infrastructure development”. Resource managers must make future management decisions within an uncertain and changing climate based on both physical and biological ecosystem response to climate change and human perception of and response to the issue. Climate change is the biggest threat facing any protected area today and resource managers must lead the charge in addressing this threat. (PDF has 59 pages.)
Resumo:
Supporting presentation slides from the Janet network end to end performance initiative
Resumo:
(PDF contains 246 pages)
Resumo:
Background: The World Gastroenterology Organization recommends developing national guidelines for the diagnosis of Celiac Disease (CD): hence a profile of the diagnosis of CD in each country is required. We aim to describe a cross-sectional picture of the clinical features and diagnostic facilities in 16 countries of the Mediterranean basin. Since a new ESPGHAN diagnostic protocol was recently published, our secondary aim is to estimate how many cases in the same area could be identified without a small intestinal biopsy. Methods: By a stratified cross-sectional retrospective study design, we examined clinical, histological and laboratory data from 749 consecutive unselected CD children diagnosed by national referral centers. Results: The vast majority of cases were diagnosed before the age of 10 (median: 5 years), affected by diarrhea, weight loss and food refusal, as expected. Only 59 cases (7.8%) did not suffer of major complaints. Tissue transglutaminase (tTG) assay was available, but one-third of centers reported financial constraints in the regular purchase of the assay kits. 252 cases (33.6%) showed tTG values over 10 times the local normal limit. Endomysial antibodies and HLA typing were routinely available in only half of the centers. CD was mainly diagnosed from small intestinal biopsy, available in all centers. Based on these data, only 154/749 cases (20.5%) would have qualified for a diagnosis of CD without a small intestinal biopsy, according to the new ESPGHAN protocol. Conclusions: This cross-sectional study of CD in the Mediterranean referral centers offers a puzzling picture of the capacities to deal with the emerging epidemic of CD in the area, giving a substantive support to the World Gastroenterology Organization guidelines.
Resumo:
This Green Guide provides a brief summary of the alarming evidence of changing climate in the Cayman Islands. As we illustrated in our first Green Guide (2008), our lives on these three magical islands are intimately connected to the land and the surrounding sea. Our economy depends on keeping our islands healthy, because our coral reefs, our beaches, our natural heritage, all draw many thousands of overseas visitors to our shores. It is our responsibility, as stakeholders sharing this beautiful environment, to do what we can to minimise our impact upon it... [PDF contains 32 pages]
Resumo:
One of the objectives of the Terrestrial Initiative in Global Environmental Research is to assess the sensitivity of British plant and animal species to climate change. The first phase of the program involved the identification of criteria for selecting species suitable for the study of effects of projected climate change in the British Isles. Apart from shallow ponds, annual temperature ranges of 0 to 25 C in temperate freshwater habitats are narrower than those in most temperate terrestrial habitats. Although freshwater organisms have to exist within a narrower range than their terrestrial equivalents, few species can survive throughout their life cycle over the whole temperature range. Field studies on the effects of natural and artificial thermal discharges into streams and rivers have shown that increases in water temperature affect aquatic insects at both the species and community level. Although field data provide valuable information, a more productive approach is to determine experimentally the requirements of different species. Although there are just over 1850 species of aquatic insects in the British Isles, detailed quantitative information on the relationship between temperature and development of eggs, larvae and pupa is available for relatively few species. One exception is the egg stage of stoneflies (Plecoptera). The range for egg hatching in stoneflies clearly show that some species could be threatened while others could benefit from a defined increase in water temperature as a result of climate change. A critical review of the available data on this group would produce a set of equations that could be used to predict the ecological effects of climate change on this group of indicator species.