991 resultados para MECHANICAL FLOCCULATION UNIT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline materials exhibit very high strengths compared to conventional materials, but their thermal stability may be poor. Electrodeposition is one of the promising methods for obtaining dense nanomaterials. It is shown that use of two different baths and appropriate conditions enables the production of nano-Ni with properties similar to commercially available materials. Microindentation experiments revealed a four fold increase in hardness value for nano-Ni compared to conventional coarse grained Ni. An improved thermal stability of nano-Ni was observed on co-deposition of nano-Al2O3particles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of acoustic streaming on nanoparticle motion and morphological evolution inside an acoustically levitated droplet using an analytical approach coupled with experiments. Nanoparticle migration due to internal recirculation forms a density stratification, the location of which depends on initial particle concentration. The time scale of density stratification is similar to that of perikinetic-driven agglomeration of particle flocculation. The density stratification ultimately leads to force imbalance leading to a unique bowl-shaped structure. Our analysis shows the mechanism of bowl formation and how it is affected by particle size, concentration, internal recirculation and fluid viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of the electrical switching studies performed on the bulk Al20GexTe80-x (2.5 less than or equal to x less than or equal to 15) chalcogenide glasses. The well known topological features, mechanical and chemical thresholds are observed. Mechanical threshold is seen at a mean coordination number of atoms, < r > = 2.50 (x = 5) a clear shift rom the mean field value of < r > = 2.4 whereas the chemical threshold is observed at < r > = 2.65 (x = 12.5) as predicted by the chemically ordered covalent network model These experiments are a sequel to similar experiments on Al20AsxTe80-x glasses in which mechanical threshold was seen at < r > = 2.60 and no chemical threshold was observed These results am well understood by a chemical bond picture developed in this article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for cost-effective manufacturing techniques led to the development of near-net-shape processes. Squeeze casting is one such established effort. This process enjoys the combined merits of casting and forging. Squeeze casting imparts soundness comparable to that of wrought products while maintaining isotropic nature. Aluminum alloys and zinc alloys have been successfully processed through squeeze casting, but copper and copper alloys do not seem to have been attempted. Considering the capability of squeeze casting process, it is reasonable to expect properties different from that of conventionally cast copper. This paper presents the details of a systematic investigation wherein optimum process parameters for the squeeze casting of pure copper were established. Microstructure of squeeze-cast copper has been found to be significantly different from that of conventionally cast copper, and the dendrite arm spacing is much smaller. In addition to the room temperature mechanical properties, elevated temperature properties of copper are also appreciably improved by squeeze casting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the effect of electrochemical doping on single-layer graphene (SG) with holes and electrons has been investigated, the effect of charge-transfer doping on SG has not been examined hitherto. Effects of varying the concentration of electron donor and acceptor molecules such as tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE) on SG produced by mechanical exfoliation as well as by the reduction of single-layer graphene oxide have been investigated. TTF softens the G-band in the Raman spectrum, whereas TCNE stiffens the G-band. The full-width-at-half-maximum of the G-band increases on interaction with both TTF and TCNE. These effects are similar to those found with few-layer graphene, but in contrast to those found with electrochemical doping. A common feature between the two types of doping is found in the case of the 2-D band, which shows softening and stiffening on electron and hole doping, respectively. The experimental results are explained on the basis of the frequency shifts, electron-phonon coupling and structural inhomogeneities that are relevant to molecule-graphene interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

``Soggy sand'' electrolyte, which essentially consists of oxide dispersions in nonaqueous liquid salt solutions, comprises an important class of soft matter electrolytes. The ion transport mechanism of soggy sand electrolyte is complex. The configuration of particles in the liquid solution has been observed to depend in a nontrivial manner on various parameters related to the oxide (concentration, size, surface chemistry) and solvent (dielectric constant, viscosity) as well as time. The state of the particles in solution not only affects ionic conductivity but also effectively the mechanical and electrochemical properties of the solid liquid composite. Apart from comprehensive understanding of the underlying phenomena that govern ion transport, which will benefit design of better electrolytes, the problem has far-reaching implications in diverse fields such as catalysis, colloid chemistry, and biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan (CS)-polyvinyl alcohol (PVA) cross-linked with sulfosuccinic acid (SSA) and modified with sulfonated polyethersulfone (SPES) mixed-matrix membranes are reported for their application in direct methanol fuel cells (DMFCs). Polyethersulfone (PES) is sulfonated by chlorosulfonic acid and factors affecting the sulfonation reaction, such as time and temperature, are studied. The ion-exchange capacity, degree of sulfonation, sorption, and proton conductivity for the mixed-matrix membranes are investigated. The mixed-matrix membranes are also characterised for their mechanical and thermal properties. The methanol-crossover flux across the mixed-matrix membranes is studied by measuring the mass balance of methanol using the density meter. The methanol cross-over for these membranes is found to be about 33% lower in relation to Nafion-117 membrane. The DMFC employing CS-PVA-SPES mixed-matrix membrane with an optimum content of 25 wt % SPES delivers a peak power-density of 5.5 mW cm-2 at a load current-density of 25 mA cm-2 while operating at 70 degrees C. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the development of ultrafine grained ZrB2-SiC composites using TiSi2 as the sintering aid and spark plasma sintering (SPS) as the processing technique. It was observed that the presence of TiSi2 improved the sinterability of the composites, such that near theoretical densification (99.9%) could be achieved for ZrB2-18 wt.% SiC-5 wt.% TiSi2 composites after SPS at 1600 degrees C for 10 min at 50 MPa. Use of innovative multi stage sintering (MSS) route, which involved holding the samples at lower (intermediate) temperatures for some time before holding at the final temperature, while keeping the net holding time to 10 min, allowed attainment of full densification of ZrB2-18 wt.% SiC-2.5 wt.% TiSi2 at a still lower final temperature of 1500 degrees C at 30 MPa. TEM observations, which revealed the presence of anisotropic ZrB2 grains with faceted grain boundaries and TiSi2 at the intergranular regions, suggested the occurrence of liquid phase sintering in the presence of TiSi2. No additional phase was detected in XRD as well as TEM, which confirmed the absence of any sintering reaction. The as developed composites possessed an excellent combination of Vickers hardness and indentation toughness, both of which increased with increase in TiSi2 content, such that the ZrBi2-18 wt.% SiC-5 wt.% TiSi2 (SPS processed at 1600 degrees C) possessed hardness of similar to 20 GPa and indentation toughness of similar to 5 MPa m(1/2). The use of MSS SPS at 1500 degrees C for ZrBi2-18 wt.% SiC-2.5 wt.% TiSi2 composite resulted in improvement in hardness of up to similar to 27 GPa and attainment of high flexural strength of similar to 455 MPa. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we study thermodynamic properties of an important class of single-chain magnets (SCMs), where alternate units are isotropic and anisotropic with anisotropy axes being non-collinear. This class of SCMs shows slow relaxation at low temperatures which results from the interplay of two different relaxation mechanisms, namely dynamical and thermal. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. We here show how statistical behavior of this class of SCMs can be studied using a transfer matrix (TM) method. We also, for the first time, discuss in detail how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. At the end of this paper, we apply this technique to study a real helical chain magnet.