977 resultados para MEAN-FIELD THEORY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

B3LYP/6-31++G** calculations to study seven tautomers of 5-methylcytosine in aqueous media have been carried out. Optimized geometries and relative stabilities for the different tautomers have been calculated in the gas phase, including interaction with two discrete water molecules and taking into account the solvent effects by using the self-consistent reaction field theory. The role of specific and bulk contributions of solvent effect on the observable properties of the 5-methylcytosine is clarified. The amino-oxo form is the most abundant tautomer in aqueous media. A reaction pathway connecting amino-oxo and amino-hydroxy forms along the corresponding transition structures has been characterized. Good agreement between theoretical and available experimental results of harmonic vibration frequencies is found. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We solve the generalized relativistic harmonic oscillator in 1+1 dimensions, i.e., including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs. We consider positive and negative quadratic potentials and discuss in detail their bound-state solutions for fermions and antifermions. The main features of these bound states are the same as the ones of the generalized three-dimensional relativistic harmonic oscillator bound states. The solutions found for zero pseudoscalar potential are related to the spin and pseudospin symmetry of the Dirac equation in 3+1 dimensions. We show how the charge conjugation and gamma(5) chiral transformations relate the several spectra obtained and find that for massless particles the spin and pseudospin symmetry-related problems have the same spectrum but different spinor solutions. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with scalar, vector, and isoscalar tensor interactions and discuss the conditions in which one may have both nucleon and antinucleon bound states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electric current and the magnetoresistance effect are studied in a double quantum-dot system, where one of the dots QD(a) is coupled to two ferromagnetic electrodes (F-1; F-2), while the second QD(b) is connected to a superconductor S. For energy scales within the superconductor gap, electric conduction is allowed by Andreev reflection processes. Due to the presence of two ferromagnetic leads, non-local crossed Andreev reflections are possible. We found that the magnetoresistance sign can be changed by tuning the external potential applied to the ferromagnets. In addition, it is possible to control the current of the first ferromagnet (F-1) through the potential applied to the second one (F-2). We have also included intradot interaction and gate voltages at each quantum dot and analyzed their influence through a mean field approximation. The interaction reduces the current amplitudes with respect to the non-interacting case, but the switching effect still remains as a manifestation of quantum coherence, in scales of the order of the superconductor coherence length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723000]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Employing a time dependent mean-field-hydrodynamic model we study the generation of black solitons in a degenerate fermion-fermion mixture in a cigar-shaped geometry using variational and numerical solutions. The black soliton is found to be the first stationary vibrational excitation of the system and is considered to be a nonlinear continuation of the vibrational excitation of the harmonic oscillator state. We illustrate the stationary nature of the black soliton, by studying different perturbations on it after its formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the U(4) hybrid formalism, manifestly N = (2,2) worldsheet supersymmetric sigma models are constructed for the type-IIB superstring in Ramond-Ramond backgrounds. The Kahler potential in these N = 2 sigma models depends on four chiral and antichiral bosonic superfields and two chiral and antichiral fermionic superfields. When the Kahler potential is quadratic, the model is a free conformal field theory which describes a flat ten-dimensional target space with Ramond-Ramond flux and non-constant dilaton. For more general Kahler potentials, the model describes curved target spaces with Ramond-Ramond flux that are not plane-wave backgrounds. Ricci-flatness of the Kahler metric implies the on-shell conditions for the background up to the usual four-loop conformal anomaly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stability of an attractive Bose-Einstein condensate on a joint one-dimensional optical lattice and an axially symmetrical harmonic trap is studied using the numerical solution of the time-dependent mean-field Gross-Pitaevskii equation and the critical number of atoms for a stable condensate is calculated. We also calculate this critical number of atoms in a double-well potential which is always greater than that in an axially symmetrical harmonic trap. The critical number of atoms in an optical trap can be made smaller or larger than the corresponding number in the absence of the optical trap by moving a node of the optical lattice potential in the axial direction of the harmonic trap. This variation of the critical number of atoms can be observed experimentally and compared with the present calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation for attractive interaction (with cubic or Kerr nonlinearity), we show that a stable bound state can appear in a Bose-Einstein condensate (BEC) in a localized exponentially screened radially symmetric harmonic potential well in two and three dimensions. We also consider an axially symmetric configuration with zero axial trap and a exponentially screened radial trap so that the resulting bound state can freely move along the axial direction like a soliton. The binding of the present states in shallow wells is mostly due to the nonlinear interaction with the trap playing a minor role. Hence, these BEC states are more suitable to study the effect of the nonlinear force on the dynamics. We illustrate the highly nonlinear nature of breathing oscillations of these states. Such bound states could be created in BECs and studied in the laboratory with present knowhow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use the time-dependent mean-field Cross-Pitaevskii equation to study the formation of a dynamically-stabilized dissipation managed bright soliton in a quasi-one dimensional Bose-Einstein condensate (BEC). Because of three-body recombination of bosonic atoms to molecules, atoms are lost (dissipated) from a BEC. Such dissipation leads to the decay of a BEC soliton. We demonstrate by a perturbation procedure that an alimentation of atoms from an external source to the BEC may compensate for the dissipation loss and lead to a dynamically-stabilized soliton. The result of the analytical perturbation method is in excellent agreement with mean-field numerics. It seems possible to obtain such a dynamically stabilized BEC soliton without dissipation in laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We employ a time- dependent mean- field- hydrodynamic model to study the generation of bright solitons in a degenerate fermion - fermion mixture in a cigar- shaped geometry using variational and numerical methods. Due to a strong Pauli- blocking repulsion among identical spin- polarized fermions at short distances there cannot be bright solitons for repulsive interspecies interactions. Employing a linear stability analysis we demonstrate the formation of stable solitons due to modulational instability of a constant-amplitude solution of the model equations for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains by jumping the effective interspecies interaction from repulsive to attractive. These fermionic solitons can be formed and studied in laboratory with present technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider pion interactions in an effective field theory of the narrow resonance X(3872), assuming it is a weakly bound molecule of the charm mesons D-0(D) over bar (*0) and D-*0(D) over bar (0). Since the hyperfine splitting of the D-0 and D-*0 is only 7 MeV greater than the neutral pion mass, pions can be produced near threshold and are nonrelativistic. We show that pion exchange can be treated in perturbation theory and calculate the next-to-leading-order correction to the partial decay width Gamma[X -> D-0(D) over bar (0)pi(0)].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The only calculations performed beyond one-loop level in the light-cone gauge make use of the Mandelstam-Leibbrandt (ML) prescription in order to circumvent the notorious gauge dependent poles. Recently we have shown that in the context of negative dimensional integration method (NDIM) such prescription can be altogether abandoned, at least in one-loop order calculations. We extend our approach, now studying two-loop integrals pertaining to two-point functions. While previous works on the subject present only divergent parts for the integrals, we show that our prescriptionless method gives the same results for them, besides finite parts for arbitrary exponents of propagators. (C) 2000 Elsevier B.V. B.V. All rights reserved.