972 resultados para M1 and M2 macrophages
Resumo:
Oxidised LDL accumulates in macrophages following scavenger receptor (SR) uptake. The expression of the SR, CD36, is increased by oxidised LDL. The signalling molecule, ceramide, can modulate intracellular peroxides and increase lipid peroxidation. Ceramide also accumulates in atherosclerotic plaques. Thus, we have examined whether ceramide can modulate CD36 expression and function in human monocyte/macrophages. Addition of synthetic short chain ceramides or the action of sphingomyelinase to generate physiological long chain ceramides in situ caused significant reductions in CD36 expression by monocytes/macrophages which was not due to inhibition of mRNA expression. Inhibition of proteasomal degradation using lactacystin had no effect on CD36 expression, however, flow cytometric analysis of permeabilised cells suggested an intracellular trafficking blockade. Ceramide treated monocytes/macrophages showed dose dependent reduction in oxidised LDL uptake. Taken together, it is suggested that ceramide blocks the transport of CD36 to the membrane of monocytes/macrophages, thereby preventing uptake of oxidised LDL. © 2006 Elsevier Inc. All rights reserved.
Resumo:
The aim of the work described in this paper was two-fold: (1) the purification of the hydroxylase component of the MSAMO to electrophoretic homogeneity using a four-step chromatographic strategy and (2) the crystallization of the two-component hydroxylase of the MSAMO in order to enhance our understanding of the precise three-dimensional structure of the MSAMO, thus yielding an insight into the nature of the active site of this enzyme. Optimised crystallization conditions were identified allowing growth of crystals of the hydroxylase component of the MSAMO within five days. Crystals exhibited a brown colour suggesting the presence on an intact Rieske-iron sulfur centre and diffracted to 7.0 Å when a few degrees of data were evaluated on a beam line X11. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not I?B degradation or tumour necrosis factor- release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.
Resumo:
Beta frequency oscillations (10-35 Hz) in motor regions of cerebral cortex play an important role in stabilising and suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson's Disease. We have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27-30 Hz) oscillations manifest in local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol (5 µM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block glutamatergic EPSCs), were recorded at -80 mV. IPSPs showed a highly significant (P< 0.01) beta frequency component, which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other). Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of voluntary movement generation.
Resumo:
Tissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined. Our work addresses the role of macrophage extracellular TG2 in apoptotic cell corpse clearance. Here we reveal TG2 expression and activity (cytosolic and cell surface) in human macrophages and demonstrate that inhibitors of protein crosslinking activity reduce macrophage clearance of dying cells. We show also that cell-impermeable TG2 inhibitors significantly inhibit the ability of macrophages to migrate and clear apoptotic cells through reduced macrophage recruitment to, and binding of, apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus our data define a role for TG2 activity at the surface of human macrophages in multiple stages of AC clearance and we propose that TG2, in association with heparan sulphates, may exert its effect on AC clearance via a mechanism involving the crosslinking of CD44.
Resumo:
Sibutramine is a satiety-inducing serotonin-noradrenaline reuptake inhibitor that acts predominantly via its primary and secondary metabolites. This study investigates the possibility that sibutramine and/or its metabolites could act directly on white adipose tissue to increase lipolysis. Adipocytes were isolated by a collagenase digestion procedure from homozygous lean (+/+) and obese-diabetic ob/ob mice, and from lean nondiabetic human subjects. The lipolytic activity of adipocyte preparations was measured by the determination of glycerol release over a 2-hour incubation period. The primary amine metabolite of sibutramine M2, caused a concentration-dependent stimulation of glycerol release by murine lean and obese adipocytes (maximum increase by 157 ± 22 and 245 ± 1696, respectively, p < 0.05). Neither sibutramine nor its secondary amine metabolite M1 had any effect on lipolytic activity. Preliminary studies indicated that M2-induced lipolysis was mediated via a beta-adrenergic action. The non-selective beta-adrenoceptor antagonist propranolol (10-6M) strongly inhibited M2-stimulated lipolysis in lean and obese murine adipocytes. M2 similarly increased lipolysis by isolated human omental and subcutaneous adipocytes (maximum increase by 194 ± 33 and 136 ± 4%, respectively, p < 0.05) with EC50 values of 12 nM and 3 nM, respectively. These results indicate that the sibutramine metabolite M2 can act directly on murine and human adipose tissue to increase lipolysis via a pathway involving beta-adrenoceptors. © Georg Thieme Verlag KG Stuttgart.
Resumo:
Core-top samples from the eastern tropical Pacific (10°N to 20°S) were used to test whether the ratio between Globorotalia menardii cultrata and Neogloboquadrina dutertrei abundance (Rc/d) and the oxygen isotope composition (?18O) of planktonic foraminifera can be used as proxies for the latitudinal position of the Equatorial Front. Specifically, this study compares the ?18O values of eight species of planktonic foraminifera (Globigerinoides ruber sensu stricto (ss) and sensu lato (sl), Globigerinoides sacculifer, Globigerinoides triloba, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii menardii, Globorotalia menardii cultrata and Globorotalia tumida) with the seasonal hydrography of the region, and evaluates the application of each species or combination of species for paleoceanographic reconstructions. The results are consistent with sea surface temperature and water column stratification patterns. We found that in samples north of 1°N, the Rc/d values tend to be higher and d18O values of G. ruber, G. sacculifer, G. triloba, P. obliquiloculata, N. dutertrei, and G. menardii cultrata tend to be lower than those from samples located south of 1°N. We suggest that the combined use of Rc/d and the d18O difference between G. ruber and G. tumida or between P. obliquiloculata and G. tumida are the most suitable tools for reconstructing changes in the latitudinal position of the Equatorial Front and changes in the thermal stratification of the upper water column in the eastern tropical Pacific.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Escherichia coli (E.coli) is a diverse bacterial species that primarily forms a beneficial symbiotic relationship with the host in the human lower gastrointestinal track (GIT), however it can also be pathogenic in this environment. Furthermore, some strains can diverge from the GIT and occupy niches such as the urinary tract. In all these environments, E. coli interacts with the immune system and macrophages represent the front line of the innate immune system. In this study we characterise the immune response by macrophages to E. coli infection. It was shown that E. coli broadly provoke a similar cytokine response during macrophages infection and furthermore are degraded primarily by the phagocytosis pathway. Recently a new group of E. coli called Adherent Invasive Escherichia coli (AIEC) has been described. AIEC are present in the guts of Crohn’s disease (CD) patients at a higher frequency than in healthy patients. AIEC can replicate in macrophages but the mechanism for this is not fully understood. The processing of AIEC by macrophages was investigated and it was shown that AIEC only replicated in permissive macrophages. Furthermore, even in a permissive macrophages AIEC are trafficked through macrophages in a similar manner to commensal E. coli. This supports the hypothesis that AIEC are highly similar to commensal E. coli and only cause pathogenicity when present in the permissive environment of the gut of CD patients. Replication in macrophages requires functioning metabolic pathways and it was identified that glycolysis is important for AIEC survival in macrophages. AIEC mutants without a fully functioning glycolysis pathway induced less IL-1β cytokine release from macrophages than wild type strain suggesting that metabolism plays a role in inflammasome activation. Furthermore, AIEC mutants that could not produce the glycolytic end product acetate induced significantly reduced IL-1β release during infection. This suggest that the acetate molecule or a phenotypic effect of its production may be a driver of IL-1β release from AIEC infected macrophages. The interaction of uropathogenic E. coli (UPEC) with macrophages was also investigated. UPEC induced very high levels of cytotoxicity in human macrophages which was shown to be dependent on the production of the pore forming toxin α-hemolysin. However, UPEC did not induced high levels of cytotoxicity in murine macrophages suggesting there are species specific sensitivity to α-hemolysin that should be considered when studying UPEC pathogenicity in murine models.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The transition of epithelial-like tumour cells to those exhibiting mesenchymal characteristics (Epithelial-to-mesenchymal Transition; EMT) is an integral process in breast cancer metastasis. EMT can be promoted by Transforming growth factor-beta (TGF-β) which can be found at high levels in the tumour stroma. Tumour-associated macrophages (TAMs) can also induce EMT in breast cancer cells, which is one way that they promote breast cancer metastasis. Vitamin D signalling has been implicated in EMT suppression and plays a role in modulating macrophage differentiation and stimulating their anti-inflammatory functions. This project had two major aims. First, we aimed to create and verify a unique fluorescent reporter gene construct designed to evaluate the dynamics of EMT in real-time and at the single-cell level. While some components of this reporter system were successfully validated, work to complete the final reporter construct is ongoing. The second and main aspect of this project focused on exploring the ability of 1,25-dihydroxyvitamin D3 (1,25D3) to modulate the interaction between mesenchymal mammary tumour cells and TAMs. Unexpectedly, in short-term treatment (48 hours) studies of 4T1 murine mammary tumour cells, we observed that 1,25D3 and TGF-β signalling work together to increase expression of the mesenchymal markers, Snai1, Fn1, and Col1a1. 1,25D3 and TGF-β also synergistically activate transcription of the gene encoding the 1,25D3-catabolizing enzyme, Cyp24a1. The ability of 1,25D3 and TGF-β to enhance expression of these genes was diminished in a long-term treatment (14 days) of 4T1 cells, and this effect was accompanied by a decrease in cell proliferation. 1,25D3 may also cooperate with cytokines produced by normal macrophages and macrophages considered to be TAM-like. Conditioned media experiments revealed that in the presence of factors from normal macrophages, 1,25D3 enhanced expression of Fn1, and in the presence of factors from TAM-like macrophages, 1,25D3 enhanced expression of Fn1 and Cyp24a1. Rather than mitigating the interaction as hypothesized, 1,25D3 may exacerbate the tumour-promoting effects of the EMT-TAM relationship. Also, signalling pathways involved in the EMT-TAM relationship may synergize with 1,25D3 to upregulate Cyp24a1 expression. These findings are important for understanding the potential of vitamin D compounds to be used in the treatment of breast cancer.
Resumo:
The influence of the fatty acid composition of chylomicron remnant-like particles (CRLPs) on their uptake and induction of lipid accumulation in macrophages was studied. CRLPs containing triacylglycerol enriched in saturated, monounsaturated, n−6 or n−3 polyunsaturated fatty acids derived from palm, olive, corn or fish oil, respectively, and macrophages derived from the human monocyte cell line THP-1 were used. Lipid accumulation (triacylglycerol and cholesterol) in the cells was measured after incubation with CRLPs for 5, 24 and 48 h, and uptake over 24 h was determined using CRLPs radiolabelled with [3H]triolein. Total lipid accumulation in the macrophages was significantly greater with palm CRLPs than with the other three types of particle. This was mainly due to increased triacylglycerol concentrations, whereas changes in cholesterol concentrations did not reach significance. There were no significant differences in lipid accumulation after incubation with olive, corn or fish CRLPs. Palm and olive CRLPs were taken up by the cells at a similar rate, which was considerably faster than that observed with corn and fish CRLPs. These findings demonstrate that CRLPs enriched in saturated or monounsaturated fatty acids are taken up more rapidly by macrophages than those enriched in n−6 or n−3 polunsaturated fatty acids, and that the faster uptake rate results in greater lipid accumulation in the case of saturated fatty acid-rich particles, but not monounsaturated fatty acid-rich particles. Thus, dietary saturated fatty acids carried in chylomicron remnants may enhance their propensity to induce macrophage foam cell formation.