980 resultados para Lyapunov function
Resumo:
Three homologous short-chain neurotoxins, named NT1, NT2 and NT3, were purified from the venom of Naja kaouthia. NT1 has an identical amino acid sequence to cobrotoxin from Naja naja atra [Biochemistry 32 (1993) 2131]. NT3 shares the same sequence with cobrotoxin b [J. Biochem. (Tokyo) 122 (1997) 1252], whereas NT2 is a novel 6 1 -residue neurotoxin. Tests of their physiological functions indicate that NT1 shows a greater inhibition of muscle contraction induced by electrical stimulation of the nerve than do NT2 and NT3. Homonuclear proton two-dimensional NMR methods were utilized to study the solution tertiary structure of NT2. A homology model-building method was employed to predict the structure of NT3. Comparison of the structures of these three toxins shows that the surface conformation of NT1 facilitates the substituted base residues, Arg28, Arg30, and Arg36, to occupy the favorable spatial location in the central region of loop 11, and the cation groups of all three arginines face out of the molecular surface of NT1 This may contribute greatly to the higher binding of NT1 with AchR compared to NT2 and NT3. (C) 2002 Elsevier Science B,V. All rights reserved.
Resumo:
This work addresses the problem of deriving F0 from distanttalking speech signals acquired by a microphone network. The method here proposed exploits the redundancy across the channels by jointly processing the different signals. To this purpose, a multi-microphone periodicity function is derived from the magnitude spectrum of all the channels. This function allows to estimate F0 reliably, even under reverberant conditions, without the need of any post-processing or smoothing technique. Experiments, conducted on real data, showed that the proposed frequency-domain algorithm is more suitable than other time-domain based ones.
Resumo:
Lyapunov-like conditions that utilize generalizations of energy and barrier functions certifying Zeno behavior near Zeno equilibria are presented. To better illustrate these conditions, we will study them in the context of Lagrangian hybrid systems. Through the observation that Lagrangian hybrid systems with isolated Zeno equilibria must have a onedimensional configuration space, we utilize our Lyapunov-like conditions to obtain easily verifiable necessary and sufficient conditions for the existence of Zeno behavior in systems of this form. © 2007 IEEE.
Resumo:
Zeno behavior is a dynamic phenomenon unique to hybrid systems in which an infinite number of discrete transitions occurs in a finite amount of time. This behavior commonly arises in mechanical systems undergoing impacts and optimal control problems, but its characterization for general hybrid systems is not completely understood. The goal of this paper is to develop a stability theory for Zeno hybrid systems that parallels classical Lyapunov theory; that is, we present Lyapunov-like sufficient conditions for Zeno behavior obtained by mapping solutions of complex hybrid systems to solutions of simpler Zeno hybrid systems defined on the first quadrant of the plane. These conditions are applied to Lagrangian hybrid systems, which model mechanical systems undergoing impacts, yielding simple sufficient conditions for Zeno behavior. Finally, the results are applied to robotic bipedal walking. © 2012 IEEE.
Resumo:
A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.
Resumo:
Concepts of function are central to design but statements about a device's functions can be interpreted in different ways. This raises problems for researchers trying to clarify the foundations of design theory and for those developing design support-tools that can represent and reason about function. By showing how functions relate systems to their sub-systems and super-systems, this article illustrates some limitations of existing function terminology and some problems with existing function statements. To address these issues, a system-relative function terminology is introduced. This is used to demonstrate that systems function not only with respect to their most local super-system, but also with respect to their more global super-systems. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Networks of controlled dynamical systems exhibit a variety of interconnection patterns that could be interpreted as the structure of the system. One such interpretation of system structure is a system's signal structure, characterized as the open-loop causal dependencies among manifest variables and represented by its dynamical structure function. Although this notion of structure is among the weakest available, previous work has shown that if no a priori structural information is known about the system, not even the Boolean structure of the dynamical structure function is identifiable. Consequently, one method previously suggested for obtaining the necessary a priori structural information is to leverage knowledge about target specificity of the controlled inputs. This work extends these results to demonstrate precisely the a priori structural information that is both necessary and sufficient to reconstruct the network from input-output data. This extension is important because it significantly broadens the applicability of the identifiability conditions, enabling the design of network reconstruction experiments that were previously impossible due to practical constraints on the types of actuation mechanisms available to the engineer or scientist. The work is motivated by the proteomics problem of reconstructing the Per-Arnt-Sim Kinase pathway used in the metabolism of sugars. © 2012 IEEE.
Resumo:
Reward processing is linked to specific neuromodulatory systems with a dopaminergic contribution to reward learning and motivational drive being well established. Neuromodulatory influences on hedonic responses to actual receipt of reward, or punishment, referred to as experienced utility are less well characterized, although a link to the endogenous opioid system is suggested. Here, in a combined functional magnetic resonance imaging-psychopharmacological investigation, we used naloxone to block central opioid function while subjects performed a gambling task associated with rewards and losses of different magnitudes, in which the mean expected value was always zero. A graded influence of naloxone on reward outcome was evident in an attenuation of pleasure ratings for larger reward outcomes, an effect mirrored in attenuation of brain activity to increasing reward magnitude in rostral anterior cingulate cortex. A more striking effect was seen for losses such that under naloxone all levels of negative outcome were rated as more unpleasant. This hedonic effect was associated with enhanced activity in anterior insula and caudal anterior cingulate cortex, areas implicated in aversive processing. Our data indicate that a central opioid system contributes to both reward and loss processing in humans and directly modulates the hedonic experience of outcomes.
Resumo:
In any thermoacoustic analysis, it is important not only to predict linear frequencies and growth rates, but also the amplitude and frequencies of any limit cycles. The Flame Describing Function (FDF) approach is a quasi-linear analysis which allows the prediction of both the linear and nonlinear behaviour of a thermoacoustic system. This means that one can predict linear growth rates and frequencies, and also the amplitudes and frequencies of any limit cycles. The FDF achieves this by assuming that the acoustics are linear and that the flame, which is the only nonlinear element in the thermoacoustic system, can be adequately described by considering only its response at the frequency at which it is forced. Therefore any harmonics generated by the flame's nonlinear response are not considered. This implies that these nonlinear harmonics are small or that they are sufficiently filtered out by the linear dynamics of the system (the low-pass filter assumption). In this paper, a flame model with a simple saturation nonlinearity is coupled to simple duct acoustics, and the success of the FDF in predicting limit cycles is studied over a range of flame positions and acoustic damping parameters. Although these two parameters affect only the linear acoustics and not the nonlinear flame dynamics, they determine the validity of the low-pass filter assumption made in applying the flame describing function approach. Their importance is highlighted by studying the level of success of an FDF-based analysis as they are varied. This is achieved by comparing the FDF's prediction of limit-cycle amplitudes to the amplitudes seen in time domain simulations.
Resumo:
This paper presents a Lyapunov design for the stabilization of collective motion in a planar kinematic model of N particles moving at constant speed. We derive a control law that achieves asymptotic stability of the splay state formation, characterized by uniform rotation of N evenly spaced particles on a circle. In designing the control law, the particle headings are treated as a system of coupled phase oscillators. The coupling function which exponentially stabilizes the splay state of particle phases is combined with a decentralized beacon control law that stabilizes circular motion of the particles. © 2005 IEEE.
Resumo:
While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.