876 resultados para Lung-cancer
Resumo:
Endobronchial ultrasound (EBUS) has become a major advance in bronchoscopy. Substantial scientific evidence has confirmed its usefulness in lung cancer diagnosis and staging, as well as in other clinical settings. It is of growing importance that endoscopists perform and interpret this imaging method accurately, in order to optimize diagnosis and treatment of their patients. The present article provides a practical and comprehensible review of the two EBUS systems currently available and its main clinical indications.
Resumo:
In patients with malignant pleural mesothelioma undergoing a multimodality therapy, treatment toxicity may outweigh the benefit of progression-free survival. The subjective experience across different treatment phases is an important clinical outcome. This study compares a standard with an individual quality of life (QoL) measure used in a multi-center phase II trial.
Resumo:
Bronchuscarcinoma ist the most frequent death cause with tumor patients. At time of diagnosis the stadium is often already advanced, the patient is inoperable. We present a patient (non-smoker) with polydipsia, visual troubles and polyuria. The lab results confirmed diabetes insipidus, but the following x-rays proved multiple intracerebral spots. And also multiple spots in the lungs, the mediastinum, in the liver, the coloumn and the adrenals. Histological diagnosis was non small cell lung cancer (NSCLC).
Resumo:
In this issue...Mineral Club, Barite, Engineer Exam, Montana State Highway Commission, Career Day, lung cancer, Selective Service, Civil War, Brown's Gulch
Resumo:
Background This is the first ever evaluation of narrow band imaging (NBI), an innovative endoscopic imaging procedure, for the visualisation of pleural processes. Methods The pleural cavity was examined in 26 patients with pleural effusions using both white light and narrow band imaging during thoracoscopy under local anaesthesia. Results In the great majority of the patients narrow band imaging depicted the blood vessels more clearly than white light, but failed to reveal any differences in number, shape or size. Only in a single case with pleura thickened by chronic inflammation and metastatic spread of lung cancer did narrow band imaging show vessels that were not detectable under white light. Conclusion It is not yet possible to assess to what extent the evidence provided by NBI is superior to that achieved with white light. Further studies are required, particularly in the early stages of pleural processes.
Resumo:
Spontaneous metastases in small cell lung cancer (SCLC) occur regularly in patients but seldom if any in conventional xenograft mouse models. To overcome this problem, SCLC cells were grafted subcutaneously onto pore forming protein and recombination activating gene 2 double knock out (pfp/rag2) mice and in severe combined immunodeficient (scid) mice. Primary tumours grew well in both mouse strains, while metastases occurred frequently in the pfp/rag2 mice and infrequently in scid mice. Hence NK cells, which are inactive in pfp/rag2 mice, play an important role in SCLC metastasis formation in xenograft models. This observation is in agreement with clinical studies, where a high NK cell number in the blood is correlated with a better prognosis of the patient.
Resumo:
Positron emission tomography-computed tomography (PET-CT) has gained widespread acceptance as a staging investigation in the diagnostic workup of malignant tumours and may be used to visualize metabolic changes before the evolution of morphological changes. To make histology of PET findings without distinctive structural changes available for treatment decisions, we developed a protocol for multimodal image-guided interventions using an integrated PET-CT machine. We report our first experience in 12 patients admitted for staging and restaging of breast cancer, non-small cell lung cancer, cervical cancer, soft tissue sarcoma, and osteosarcoma. Patients were repositioned according to the findings in PET-CT and intervention was planned based on a subsequent single-bed PET-CT acquisition of the region concerned. The needle was introduced under CT guidance in a step-by-step technique and correct needle position in the centre of the FDG avid lesion was assured by repetition of a single-bed PET-CT acquisition before sampling. The metabolically active part of lesions was accurately targeted in all patients and representative samples were obtained in 92%. No major adverse effects occurred. We conclude that PET-CT guidance for interventions is feasible and may be promising to optimize the diagnostic yield of CT-guided interventions and to make metabolically active lesions without morphological correlate accessible to percutaneous interventions.
Resumo:
Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected.
Resumo:
Living in high-rise buildings could influence the health of residents. Previous studies focused on structural features of high-rise buildings or characteristics of their neighbourhoods, ignoring differences within buildings in socio-economic position or health outcomes. We examined mortality by floor of residence in the Swiss National Cohort, a longitudinal study based on the linkage of December 2000 census with mortality and emigration records 2001-2008. Analyses were based on 1.5 million people living in buildings with four or more floors and 142,390 deaths recorded during 11.4 million person-years of follow-up. Cox models were adjusted for age, sex, civil status, nationality, language, religion, education, professional status, type of household and crowding. The rent per m² increased with higher floors and the number of persons per room decreased. Mortality rates decreased with increasing floors: hazard ratios comparing the ground floor with the eighth floor and above were 1.22 [95% confidence interval (CI) 1.15-1.28] for all causes, 1.40 (95% CI 1.11-1.77) for respiratory diseases, 1.35 (95% CI 1.22-1.49) for cardiovascular diseases and 1.22 (95% CI 0.99-1.50) for lung cancer, but 0.41 (95% CI 0.17-0.98) for suicide by jumping from a high place. There was no association with suicide by any means (hazard ratio 0.81; 95% CI 0.57-1.15). We conclude that in Switzerland all-cause and cause-specific mortality varies across floors of residence among people living in high-rise buildings. Gradients in mortality suggest that floor of residence captures residual socioeconomic stratification and is likely to be mediated by behavioural (e.g. physical activity), and environmental exposures, and access to a method of suicide.
Resumo:
AIM To examine the association of alcohol-related mortality and other causes of death with neighbourhood density of alcohol-selling outlets for on-site consumption. DESIGN, SETTING AND PARTICIPANTS Longitudinal study of the adult Swiss population (n = 4 376 873) based on census records linked to mortality data from 2001 to 2008. MEASUREMENTS Sex-specific hazard ratios (HR) for death and 95% confidence intervals (95%CI) were calculated using Cox models adjusting for age, educational level, occupational attainment, marital status and other potential confounders. The density of alcohol-selling outlets within 1000 m of the residence was calculated using geocodes of outlets and residences. FINDINGS Compared with >17 outlets within 1000 m the HR for alcohol-related mortality in men was 0.95 (95%CI: 0.89-1.02) for 8-17 outlets, 0.84 (95%CI: 0.77-0.90) for 3-7 outlets, 0.76 (95%CI: 0.68-0.83) for 1-2 outlets and 0.60 (95%CI: 0.51-0.72) for 0 outlets. The gradient in women was somewhat steeper, with a HR comparing 0 with >17 outlets of 0.39 (95%CI: 0.26-0.60). Mortality from mental and behavioural causes and lung cancer were also associated with density of alcohol-selling outlets: HRs comparing 0 outlets with >17 outlets were 0.64 (95%CI: 0.52-0.79) and 0.79 (95%CI: 0.72-0.88), respectively, in men and 0.46 (95%CI: 0.27-0.78) and 0.63 (95%CI: 0.52-0.77), respectively, in women. There were weak associations in the same direction with all-cause mortality in men but not in women. CONCLUSIONS In Switzerland, alcohol-related mortality is associated with the density of outlets around the place of residence. Community-level interventions to reduce alcohol outlet density may usefully complement existing interventions.
Resumo:
Background Non-AIDS defining cancers (NADC) are an important cause of morbidity and mortality in HIV-positive individuals. Using data from a large international cohort of HIV-positive individuals, we described the incidence of NADC from 2004–2010, and described subsequent mortality and predictors of these. Methods Individuals were followed from 1st January 2004/enrolment in study, until the earliest of a new NADC, 1st February 2010, death or six months after the patient’s last visit. Incidence rates were estimated for each year of follow-up, overall and stratified by gender, age and mode of HIV acquisition. Cumulative risk of mortality following NADC diagnosis was summarised using Kaplan-Meier methods, with follow-up for these analyses from the date of NADC diagnosis until the patient’s death, 1st February 2010 or 6 months after the patient’s last visit. Factors associated with mortality following NADC diagnosis were identified using multivariable Cox proportional hazards regression. Results Over 176,775 person-years (PY), 880 (2.1%) patients developed a new NADC (incidence: 4.98/1000PY [95% confidence interval 4.65, 5.31]). Over a third of these patients (327, 37.2%) had died by 1st February 2010. Time trends for lung cancer, anal cancer and Hodgkin’s lymphoma were broadly consistent. Kaplan-Meier cumulative mortality estimates at 1, 3 and 5 years after NADC diagnosis were 28.2% [95% CI 25.1-31.2], 42.0% [38.2-45.8] and 47.3% [42.4-52.2], respectively. Significant predictors of poorer survival after diagnosis of NADC were lung cancer (compared to other cancer types), male gender, non-white ethnicity, and smoking status. Later year of diagnosis and higher CD4 count at NADC diagnosis were associated with improved survival. The incidence of NADC remained stable over the period 2004–2010 in this large observational cohort. Conclusions The prognosis after diagnosis of NADC, in particular lung cancer and disseminated cancer, is poor but has improved somewhat over time. Modifiable risk factors, such as smoking and low CD4 counts, were associated with mortality following a diagnosis of NADC.
Resumo:
Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target delineation of lung cancer. Methods: To determine whether cine CT could substitute 4D-CT for small mobile lung tumors, we compared target volumes delineated by a physician on cine CT and 4D-CT for 27 tumors with intrafractional motion greater than 1 cm. We assessed dose calculation by comparing dose distributions calculated on respiratory-averaged cine CT and respiratory-averaged 4D-CT using the gamma index. A threshold-based PET segmentation model of size, motion, and source-to-background was developed from phantom scans and validated with 24 lung tumors. Finally, feasibility of integrating cine CT and PET for contouring was assessed on a small group of larger tumors. Results: Cine CT to 4D-CT target volume ratios were (1.05±0.14) and (0.97±0.13) for high-contrast and low-contrast tumors respectively which was within intraobserver variation. Dose distributions on cine CT produced good agreement (< 2%/1 mm) with 4D-CT for 71 of 73 patients. The segmentation model fit the phantom data with R2 = 0.96 and produced PET target volumes that matched CT better than 6 published methods (-5.15%). Application of the model to more complex tumors produced mixed results and further research is necessary to adequately integrate PET and cine CT for delineation. Conclusions: Cine CT can be used for target delineation of small mobile lesions with minimal differences to 4D-CT. PET, utilizing the segmentation model, can provide additional contrast. Additional research is required to assess the efficacy of complex tumor delineation with cine CT and PET. Respiratory-averaged cine CT can substitute respiratory-averaged 4D-CT for dose calculation with negligible differences.
Resumo:
The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.
Resumo:
The Radiological Physics Center (RPC) provides heterogeneous phantoms that are used to evaluate radiation treatment procedures as part of a comprehensive quality assurance program for institutions participating in clinical trials. It was hypothesized that the existing RPC heterogeneous thorax phantom can be modified to assess lung tumor proton beam therapy procedures involving patient simulation, treatment planning, and treatment delivery, and could confirm agreement between the measured dose and calculated dose within 5%/3mm with a reproducibility of 5%. The Hounsfield Units (HU) for lung equivalent materials (balsa wood and cork) was measured using a CT scanner. The relative linear stopping power (RLSP) of these materials was measured. The linear energy transfer (LET) of Gafchromic EBT2 film was analyzed utilizing parallel and perpendicular orientations in a water tank and compared to ion chamber readings. Both parallel and perpendicular orientations displayed a quenching effect underperforming the ion chamber, with the parallel orientation showing an average 31 % difference and the perpendicular showing an average of 15% difference. Two treatment plans were created that delivered the prescribed dose to the target volume, while achieving low entrance doses. Both treatment plans were designed using smeared compensators and expanded apertures, as would be utilized for a patient in the clinic. Plan 1a contained two beams that were set to orthogonal angles and a zero degree couch kick. Plan 1b utilized two beams set to 10 and 80 degrees with a 15 degree couch kick. EBT2 film and TLD were inserted and the phantom was irradiated 3 times for each plan. Both plans passed the criteria for the TLD measurements where the TLD values were within 7% of the dose calculated by Eclipse. Utilizing the 5%/3mm criteria, the 3 trial average of overall pass rate was 71% for Plan 1a. The 3 trial average for the overall pass rate was 76% for Plan 1b. The trials were then analyzed using RPC conventional lung treatment guidelines set forth by the RTOG: 5%/5mm, and an overall pass rate of 85%. Utilizing these criteria, only Plan 1b passed for all 3 trials, with an average overall pass rate of 89%.
Resumo:
Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard imaging methods. The key to extracting function information from 4D CT is the construction of a volumetric deformation field that accurately tracks the motion of the patient's lungs during the respiratory cycle. The spatial accuracy of the displacement field directly impacts the ventilation images; higher spatial registration accuracy will result in less ventilation image artifacts and physiologic inaccuracies. Presently, a consistent methodology for spatial accuracy evaluation of the DIR transformation is lacking. Evaluation of the 4D CT-derived ventilation images will be performed to assess correlation with global measurements of lung ventilation, as well as regional correlation of the distribution of ventilation with the current clinical standard SPECT. This requires a novel framework for both the detailed assessment of an image registration algorithm's performance characteristics as well as quality assurance for spatial accuracy assessment in routine application. Finally, we hypothesize that hypo-ventilated regions, identified on 4D CT ventilation images, will correlate with hypo-perfused regions in lung cancer patients who have obstructive lesions. A prospective imaging trial of patients with locally advanced non-small-cell lung cancer will allow this hypothesis to be tested. These advances are intended to contribute to the validation and clinical implementation of CT-based ventilation imaging in prospective clinical trials, in which the impact of this imaging method on patient outcomes may be tested.