875 resultados para Low-carbon logistics
Resumo:
The economic seaweed Hizikia fusiforme (Harv.) Okamura (Sargassaceae, Phaeophyta) usually experiences periodical exposures to air at low tide. Photosynthetic carbon acquisition mechanisms were comparatively studied under submersed and emersed conditions in order to establish a general understanding of its photosynthetic characteristics associated with tidal cycles. When submersed in seawater, H fusiforme was capable of acquiring HCO3- as a source of inorganic carbon (Ci) to drive photosynthesis, while emersed and exposed to air, it used atmospheric CO2 for photosynthesis. The pH changes surrounding the H fusiforme fronds had less influence on the photosynthetic rates under emersed condition than under submersed condition. When the pH was as high as 10.0, emersed H fusiforme could photosynthesize efficiently, but the submersed alga exhibited very poor photosynthesis. Extracellular carbonic anhydrase (CA) played an important role in the photosynthetic acquisitions of exogenous Ci in water as well as in air. Both the concentrations of dissolved inorganic carbon in general seawater and CO2 in air were demonstrated to limit the photosynthesis of H fusiforme, which was sensitive to O-2. It appeared that the exogenous carbon acquisition system, being dependent of external CA activity, operates in a way not enough to raise intracellular CO2 level to prevent photorespiration. The inability of H fusiforme to achieve its maximum photosynthetic rate at the current ambient Ci levels under both submersed and emersed conditions suggested that the yield of aquaculture for this economic species would respond profitably to future increases in CO2 concentration in the sea and air.
Resumo:
The photosynthetic performances of Porphyra haitanensis thalli were investigated in order to understand its mechanisms for exogenous carbon acquisition during emersion at low tide. The emersed photosynthesis was studied by altering the pH value in the water film on the thalli surface, treating them with carbonic anhydarase inhibitors (acetazolamide and 6-ethoxyzolamide), adjusting the CO2 concentrations in the air, and comparing the theoretical maximum CO2 supply rates within the adherent water film with the observed photosynthetic CO2 uptake rates. It was found that the principal exogenous inorganic carbon source for the photosynthesis of P. haitanensis during emersion was atmospheric CO2. The driving force of CO2 flux across the water film was the CO2 concentration gradient within it. Carbonic anhydrase accelerated both extracellular and intracellular CO2 transport. The emersed photosynthesis of P. haitanensis was limited by the present atmospheric CO2 level, and would be enhanced by atmospheric CO2 rise that would trigger global warming.
Resumo:
The mechanism of inorganic carbon (C-i) acquisition by the economic brown macroalga, Hizikia fusiforme (Harv.) Okamura (Sargassaceae), was investigated to characterize its photosynthetic physiology. Both intracellular and extracellular carbonic anhydrase (CA) were detected, with the external CA activity accounting for about 5% of the total. Hizikia fusiforme showed higher rates of photosynthetic oxygen evolution at alkaline pH than those theoretically derived from the rates of uncatalyzed CO2 production from bicarbonate and exhibited a high pH compensation point (pH 9.66). The external CA inhibitor, acetazolamide, significantly depressed the photosynthetic oxygen evolution, whereas the anion-exchanger inhibitor 4,4'-diisothiocyano-stilbene-2,2'-disulfonate had no inhibitory effect on it, implying the alga was capable of using HCO3- as a source of C-i for its photosynthesis via the mediation of the external CA. CO2 concentrations in the culture media affected its photosynthetic properties. A high level of CO2 (10,000 ppmv) resulted in a decrease in the external CA activity; however, a low CO2 level (20 ppmv) led to no changes in the external CA activity but raised the intracellular CA activity. Parallel to the reduction in the external CA activity at the high CO2 was a reduction in the photosynthetic CO2 affinity. Decreased activity of the external CA in the high CO2 grown samples led to reduced sensitiveness of photosynthesis to the addition of acetazolamide at alkaline pH. It was clearly indicated that H. fusiforme, which showed CO2-limited photosynthesis with the half-saturating concentration of C-i exceeding that of seawater, did not operate active HCO3- uptake but used it via the extracellular CA for its photosynthetic carbon fixation.
Resumo:
Intertidal macroalgae experience continual alternation of photosynthesis between aquatic state at high tide and aerial state at low tide. The comparative photosynthetic responses to inorganic carbon were investigated in the common intertidal macroalga Ulva lactuca L. along the coast of Shantou between aquatic and aerial state. The inorganic carbon dissolved in seawater at present could fully (at 10 degreesC or 20 degreesC) or nearly (at 30 degreesC) saturate the aquatic photosynthesis of U. lactuca. However, the aerial photosynthesis was limited by current ambient atmospheric CO2 level, and such a limitation was more severe at higher temperature (20degrees - 30degrees T) than at lower temperature (10 T). The carbon-saturated maximal photosynthesis of U. lactuca under aerial state was much greater than that under aquatic state at 10 degreesC and 20 degreesC, while the maximal photosynthesis under both states was similar at 30 degreesC. The aerial values of K-m (CO2) for photosynthesis were higher than the aquatic values. On the contrary, the values of apparent photosynthetic CO2 conductance under aerial state were considerably lower than that under aquatic state. It was concluded that the increase of atmospheric CO2 would enhance the primary productivity of U. lactuca through stimulating the photosynthesis under aerial state during low tide.
Resumo:
Sediments and soils collected from the Ya-Er Lake area in China were analysed for the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), hexachlorocyclohexane (HCHs) and hexachlorobenzene (HCB). The results indicated the main pollution problems in the Ya-Er Lake area, which was heavily polluted by HCHs and chlorobenzenes, now is dominantly polluted by PCDD/Fs, PCBs and HCB. The occurrence of PCDD/Fs and PCBs with relatively high levels of HpCDDs, OCDD and low chlorinated-substituted PCBs, is attributed to the discharge of waste water and biodegradation. The vertical distributions of HCH-residues are related with the content of organic carbon and particle size. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.
Resumo:
In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the "electromagnetic" and "chemical" mechanism, were mainly responsible for the experiment results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We provide a detailed expression of the vibrational potential for the lattice dynamics of single-wall carbon nanotubes (SWCNT's) satisfying the requirements of the exact rigid translational as well as rotational symmetries, which is a nontrivial generalization of the valence force model for the planar graphene sheet. With the model, the low-frequency behavior of the dispersion of the acoustic modes as well as the flexure mode can be precisely calculated. Based upon a comprehensive chiral symmetry analysis, the calculated mode frequencies (including all the Raman- and infrared-active modes), velocities of acoustic modes, and the polarization vectors are systematically fitted in terms of the chiral angle and radius, where the restrictions of various symmetry operations of SWCNT's are fulfilled.
Resumo:
Carbon films were deposited by mass-selected ion beam technique with ion energies 50-200eV at a substrate temperature from room temperature to 80 degreesC,. For the energies used, smooth diamond-like carbon films were deposited at room temperature. When the substrate temperature was 600 degreesC,rough graphitic films were produced. But highly oriented carbon tubes were observed when the energies were larger than 140eV at 800 degreesC. They were perpendicular to the surface and parallel to each other. preferred orientation of graphite basic plane was observed by high-resolution electron microscopy. Shallow ion implantation and stress are responsible for this orientation.
Resumo:
A direct ion beam deposition system designed for heteroepitaxy at a low substrate temperature and for the growth of metastable compounds has been constructed and tested. The system consists of two mass-resolved low-energy ion beams which merge at the target with an incident energy range 50-25 000 eV. Each ion beam uses a Freeman ion source for ion production and a magnetic sector for mass filtering. While a magnetic quadrupole lens is used in one beam for ion optics, an electrostatic quadrupole lens focuses the other beam. Both focusing approaches provide a current density more than 100-mu-A/cm2, although the magnetic quadrupole gives a better performance for ion energies below 200 eV. The typical current of each beam reaches more than 0.3 mA at 100 eV, with a ribbon beam of about 0.3-0.5 x 2 cm2. The target is housed in an ultrahigh vacuum chamber with a base pressure of 1 x 10(-7) Pa and a typical pressure of 5 x 10(-6) Pa when a noncondensable beam like argon is brought into the chamber. During deposition, the target can be heated to 800-degrees-C and scanned mechanically with an electronic scanning control unit. The dual beam system has been used to grow GaN using a Ga+ and a N+ beam, and to study the oxygen and hydrogen ion beam bombardment effects during carbon ion beam deposition. The results showed that the simultaneous arrival of two beams at the target is particularly useful in compound formation and in elucidation of growth mechanisms.
Resumo:
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 degrees C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3-10 mu m. Raman spectra show two strong peaks about 1332 cm (1) and 1598 cm (1), indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/mu m, no evident decay at 3.4 mA/cm(2) in 480 min. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The relationship between the penetration depth and the level and distribution of chromosomal aberration of the root tip cells were investigated by exposure of the superposed tomato seeds to 80 MeV/u carbon ions. The results showed that on the entrance of the beam the chromosomal aberration level was low. Damage such as breaks and gaps were dominant. At the Bragg peak, the chromosomal aberration level was high. The yields of dicentrics, rings and disintegrated small chromosomes increased but the yields of breaks and gaps decreased. These results are consistent with the distribution of the physical depth dose pro. le of carbon ions. It is effective to deposit the Bragg peak on the seeds to induce hereditary aberration in the mutation breeding with heavy ions.
Resumo:
DNA damage and cell reproductive death determined by alkaline comet and clonogenic survival assays were examined in Lewis lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. Based on the survival data, Lewis lung carcinoma cells were verified to be more radiosensitive to the carbon ion beam than to the X-ray irradiation. The relative biological effectiveness (RBE) value, which was up to 1.77 at 10% survival level, showed that the DNA damage induced by the high-LET carbon ion beam was more remarkable than that induced by the low-LET X-ray irradiation. The dose response curves of '' Tail DNA (%)'' (TD) and "Olive tail moment" (OTM) for the carbon ion irradiation showed saturation beyond about 8 Gy. This behavior was not found in the X-ray curves. Additionally, the carbon ion beam produced a lower survival fraction at 2 Gy (SF2) value and a higher initial Olive tail moment 2 Gy (OTM2) than those for the X-ray irradiation. These results suggest that carbon ion beams having high-LET values produced more severe cell reproductive death and DNA damage in Lewis lung carcinoma cells in comparison with X-rays and comet assay might be an effective predictive test even combining with clonogenic assay to assess cellular radio sensitivity
Resumo:
To investigate the protective effects of melatonin against high-LET ionizing radiation, V79 Chinese hamster cells were irradiated with 100 keV/mu m carbon beam. Parallel experiments were performed with 200 kV X-rays. To avoid the impact from extra solvents, melatonin was dissolved directly in culture medium. Cells were cultured in melatonin medium for 1 hr before irradiation. Cell inactivation was measured with conventional colony forming assay, medium containing 6-thioguanine was used for the selection of mutants at hprt locus, and the cell cycle was monitored by flow cytometry. Both carbon beam and X-rays induced cell inactivation, hprt gene mutation and cell cycle G2 block dose-dependently. But carbon beam showed stronger effects as indicated by all three endpoints and the relative biological effectiveness (RBE) was 3.5 for cell killing (at 10% survival level) and 2.9 for mutation induction (at 5 x 10(-5) mutants/ cell level). Melatonin showed protective effects against ionizing radiation in a dose-dependent manner. In terms of cell killing, melatonin only increased the survival level of those samples exposed to 8Gy or larger of X-rays or 6 Gy or larger of carbon beam. In the induction of hprt mutation and G2 block, melatonin reduced such effects induced by carbon beam but not by X-rays. The results suggest that melatonin reduces the direct interaction of particles with cells rather than an indirect interaction. Further studies are required to disclose the underlying mechanisms.
Resumo:
Hypersensitive response of mammalian cells in cell killing to X- and gamma-rays has been reported at doses below 1 Gy. The purpose of this study was to examine the low dose sensitivity of human hepatoma SMMC-7721 cells irradiated with Co-60 gamma-rays and 50 MeV/u C-12 ions. Experiments using gamma-rays and charged particle irradiation were performed, particularly in the low dose range from 0 to 2 Gy. The survival effect of SMMC-7721 cells was measured by means of standard clonogenic assay in conjunction with a cell sorter. The result indicates SMMC-7721 cells showed hyper-radiosensitive response at low doses and increased radio-resistance at larger single doses for the carbon ions (LET = 45.2 keV/mu m) and the gamma-rays. However, the HRS/IRR effect caused by high-LET irradiation is different from that by low-LET radiation. This might possibly be due to the difference in the mode of energy deposition by particle beam and low-LET irradiation.