977 resultados para Low altitude flight
Resumo:
Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.
Resumo:
Voltage unbalance is a major power quality problem in low voltage residential feeders due to the random location and rating of single-phase rooftop photovoltaic cells (PV). In this paper, two different improvement methods based on the application of series (DVR) and parallel (DSTATCOM) custom power devices are investigated to improve the voltage unbalance problem in these feeders. First, based on the load flow analysis carried out in MATLAB, the effectiveness of these two custom power devices is studied vis-à-vis the voltage unbalance reduction in urban and semi-urban/rural feeders containing rooftop PVs. Their effectiveness is studied from the installation location and rating points of view. Later, a Monte Carlo based stochastic analysis is carried out to investigate their efficacy for different uncertainties of load and PV rating and location in the network. After the numerical analyses, a converter topology and control algorithm is proposed for the DSTATCOM and DVR for balancing the network voltage at their point of common coupling. A state feedback control, based on pole-shift technique, is developed to regulate the voltage in the output of the DSTATCOM and DVR converters such that the voltage balancing is achieved in the network. The dynamic feasibility of voltage unbalance and profile improvement in LV feeders, by the proposed structure and control algorithm for the DSTATCOM and DVR, is verified through detailed PSCAD/EMTDC simulations.
Resumo:
This paper presents a pose estimation approach that is resilient to typical sensor failure and suitable for low cost agricultural robots. Guiding large agricultural machinery with highly accurate GPS/INS systems has become standard practice, however these systems are inappropriate for smaller, lower-cost robots. Our positioning system estimates pose by fusing data from a low-cost global positioning sensor, low-cost inertial sensors and a new technique for vision-based row tracking. The results first demonstrate that our positioning system will accurately guide a robot to perform a coverage task across a 6 hectare field. The results then demonstrate that our vision-based row tracking algorithm improves the performance of the positioning system despite long periods of precision correction signal dropout and intermittent dropouts of the entire GPS sensor.
Resumo:
Almost half of all game players are now women. However, women only represent a small proportion of game developers. There is a lack of previous research to suggest why women don't pursue careers in games and how we can attract more women to the industry. In this paper, we investigate the issues and barriers that prevent women from entering the games industry, as well as the solutions and steps that can be taken to attract more women to the industry. We draw on the lessons learned by the information technology industry and report on a program of events that was conducted at the Queensland University of Technology in 2011. These events provided some insight into the issues surrounding the lack of women in the games industry, as well as some initial steps that we can take as an industry to attract and support more female developers.
Resumo:
Stagnation-point total heat transfer was measured on a 1:27.7 model of the Flight Investigation of Reentry Environment II flight vehicle. Experiments were performed in the X1 expansion tube at an equivalent flight velocity and static enthalpy of 11 km/s and 12.7 MJ/kg, respectively. Conditions were chosen to replicate the flight condition at a total flight time of 1639.5 s, where radiation contributed an estimated 17-36% of the total heat transfer. This contribution is theorized to reduce to <2% in the scaled experiments, and the heating environment on the test model was expected to be dominated by convection. A correlation between reported flight heating rates and expected experimental heating, referred to as the reduced flight value, was developed to predict the level of heating expected on the test model. At the given flow conditions, the reduced flight value was calculated to be 150 MW/m2. Average stagnation-point total heat transfer was measured to be 140 ± 7% W/m2, showing good agreement with the predicted value. Experimentally measured heat transfer was found to have good agreement of between 5 and 15% with a number of convective heating correlations, confirming that convection dominates the tunnel heating environment, and that useful experimental measurements could be made in weakly coupled radiating flow
Resumo:
The integration of separate, yet complimentary, cortical pathways appears to play a role in visual perception and action when intercepting objects. The ventral system is responsible for object recognition and identification, while the dorsal system facilitates continuous regulation of action. This dual-system model implies that empirically manipulating different visual information sources during performance of an interceptive action might lead to the emergence of distinct gaze and movement pattern profiles. To test this idea, we recorded hand kinematics and eye movements of participants as they attempted to catch balls projected from a novel apparatus that synchronised or de-synchronised accompanying video images of a throwing action and ball trajectory. Results revealed that ball catching performance was less successful when patterns of hand movements and gaze behaviours were constrained by the absence of advanced perceptual information from the thrower's actions. Under these task constraints, participants began tracking the ball later, followed less of its trajectory, and adapted their actions by initiating movements later and moving the hand faster. There were no performance differences when the throwing action image and ball speed were synchronised or de-synchronised since hand movements were closely linked to information from ball trajectory. Results are interpreted relative to the two-visual system hypothesis, demonstrating that accurate interception requires integration of advanced visual information from kinematics of the throwing action and from ball flight trajectory.
Resumo:
The introduction of safety technologies into complex socio-technical systems requires an integrated and holistic approach to HF and engineering, considering the effects of failures not only within system boundaries, but also at the interfaces with other systems and humans. Level crossing warning devices are examples of such systems where technically safe states within the system boundary can influence road user performance, giving rise to other hazards that degrade safety of the system. Chris will discuss the challenges that have been encountered to date in developing a safety argument in support of low-cost level crossing warning devices. The design and failure modes of level crossing warning devices are known to have a significant influence on road user performance; however, quantifying this effect is one of the ongoing challenges in determining appropriate reliability and availability targets for low-cost level crossing warning devices.
Resumo:
Purpose The aim of this study is to assess the refractive and visual outcomes following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 intraolcular lens (IOL) (Alcon Laboratories, Inc) in patients with low corneal astigmatism. Materials and Methods A retrospective, consecutive, single surgeon series of ninety-eight eyes of 88 patients following cataract surgery and implantation of the AcrySof IQ Toric SN6AT2 IOL in eyes with low preoperative corneal astigmatism. Postoperative measurements were obtained at one month post surgery. Main outcome measures were monocular distance visual acuity and residual refractive astigmatism. Results The mean preoperative corneal astigmatic power vector (APV) was 0.38 ± 0.09 D. Following surgery and implantation of the toric IOL, mean postoperative refractive APV was 0.13 ± 0.10 D. Mean postoperative distance uncorrected visual acuity (UCVA) was 0.08 ± 0.09 logMAR. Postoperative spherical equivalent refraction (SER) resulted in a mean of - 0.23 ± 0.22 D, with 96% of eyes falling within 0.50 D of the target SER. Conclusions The AcrySof IQ Toric SN6AT2 IOL is a safe and effective option for eyes undergoing cataract surgery with low amounts of preoperative corneal astigmatism.
Resumo:
Background and Purpose The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. Experimental Approach C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. Key Results (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. Conclusions and Implications β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.
Resumo:
Low voltage distribution feeders with large numbers of single phase residential loads experience severe current unbalance that often causes voltage unbalance problems. The addition of intermittent generation and new loads in the form of roof top photovoltaic generation and electric vehicles makes these problems even more acute. In this paper, an intelligent dynamic residential load transfer scheme is proposed. Residential loads can be transferred from one phase to another phase to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch with three-phase input and single-phase output connection. The main controller, installed at the transformer will observe the power consumption in each load and determine which house(s) should be transferred from one phase to another in order to keep the voltage unbalance in the feeder at a minimum. The efficacy of the proposed load transfer scheme is verified through MATLAB and PSCAD/EMTDC simulations.
Resumo:
Voltage drop at network peak hours is a significant power quality problem in Low Voltage (LV) distribution feeders. Recently, voltage rise due to high penetration of Photovoltaic cells (PVs) has been creating a new power quality problem during noon periods. In this paper, a voltage control strategy is proposed for the household installed PVs to regulate the voltage along the LV feeder. For this purpose, each PV is controlled to exchange reactive power with the grid. A droop control method is utilized to coordinate the reactive power exchange of each PV. The proposed method is a decentralized local voltage support since it is based on only local measurements and does not require any communication with other PVs. The required converter and filter structure and control algorithms are proposed to ensure the dynamic performance of the system. The study focuses on 3-phase PVs. The network is studied at network peak and off-peak periods, separately. The efficacy of the proposed voltage support concept is verified through numerical and dynamic analyses with MATLAB and PSCAD/EMTDC.
Resumo:
In order to dynamically reduce voltage unbalance along a low voltage distribution feeder, a smart residential load transfer system is discussed. In this scheme, residential loads can be transferred from one phase to another to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch and a controller. The master controller, installed at the transformer, observes the power consumption in each house and will determine which house(s) should be transferred from an initially connected phase to another in order to keep the voltage unbalance minimum. The performance of the smart load transfer scheme is demonstrated by simulations.
Resumo:
A novel intelligent online demand management system is discussed in this chapter for peak load management in low voltage residential distribution networks based on the smart grid concept. The discussed system also regulates the network voltage, balances the power in three phases and coordinates the energy storage within the network. This method uses low cost controllers, with two-way communication interfaces, installed in costumers’ premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by a MATLAB-based simulation which includes detailed modeling of residential loads and the network.
Resumo:
We present a pole inspection system for outdoor environments comprising a high-speed camera on a vertical take-off and landing (VTOL) aerial platform. The pole inspection task requires a vehicle to fly close to a structure while maintaining a fixed stand-off distance from it. Typical GPS errors make GPS-based navigation unsuitable for this task however. When flying outdoors a vehicle is also affected by aerodynamics disturbances such as wind gusts, so the onboard controller must be robust to these disturbances in order to maintain the stand-off distance. Two problems must therefor be addressed: fast and accurate state estimation without GPS, and the design of a robust controller. We resolve these problems by a) performing visual + inertial relative state estimation and b) using a robust line tracker and a nested controller design. Our state estimation exploits high-speed camera images (100Hz) and 70Hz IMU data fused in an Extended Kalman Filter (EKF). We demonstrate results from outdoor experiments for pole-relative hovering, and pole circumnavigation where the operator provides only yaw commands. Lastly, we show results for image-based 3D reconstruction and texture mapping of a pole to demonstrate the usefulness for inspection tasks.
Resumo:
We describe a new species of dasyurid marsupial within the genus Antechinus that was previously known as a northern outlier of Dusky Antechinus (A. swainsonii). The Black-tailed Antechinus, Antechinus arktos sp. nov., is known only from areas of high altitude and high rainfall on the Tweed Volcano caldera of far south-east Queensland and north-east New South Wales, Australia. Antechinus arktos formerly sheltered under the taxonomic umbrella of A. swainsonii mimetes, the widespread mainland form of Dusky Antechinus. With the benefit of genetic hindsight, some striking morphological differences are herein resolved: A. s. mimetes is more uniformly deep brown-black to grizzled grey-brown from head to rump, with brownish (clove brown—raw umber) hair on the upper surface of the hindfoot and tail, whereas A. arktos is more vibrantly coloured, with a marked change from greyish-brown head to orange-brown rump, fuscous black on the upper surface of the hindfoot and dense, short fur on the evenly black tail. Further, A. arktos has marked orange-brown fur on the upper and lower eyelid, cheek and in front of the ear and very long guard hairs all over the body; these characters are more subtle in A. s. mimetes. There are striking genetic differences between the two species: at mtDNA, A. s. mimetes from north-east New South Wales is 10% divergent to A. arktos from its type locality at Springbrook NP, Queensland. In contrast, the Ebor A. s. mimetes clades closely with conspecifics from ACT and Victoria. A. arktos skulls are strikingly different to all subspecies of A. swainsonii. A. arktos are markedly larger than A. s. mimetes and A. s. swainsonii (Tasmania) for a range of craniodental measures. Antechinus arktos were historically found at a few proximate mountainous sites in south-east Queensland, and have only recently been recorded from or near the type locality. Even there, the species is likely in low abundance. The Black-tailed Antechinus has plausibly been detrimentally affected by climate change in recent decades, and will be at further risk with increasing warming trends.