917 resultados para Loading and unloading
Resumo:
Purpose. This study was conducted to determine whether newer infrared or laser welding technologies created joints superior to traditional furnace or torch soldering methods of joining metals. It was designed to assess the mechanical resistance, the characteristics of the fractured surfaces, and the elemental diffusion of joints obtained by four different techniques: (1) preceramic soldering with a propane-oxygen torch, (2) postceramic soldering with a porcelain furnace, (3) preceramic and (4) postceramic soldering with an infrared heat source, and (5) laser welding. Material and methods. Mechanical resistance was determined by measuring the ultimate tensile strength of the joint and by determining their resistance to fatigue loading. Elemental diffusion to and from the joint was assessed with microprobe tracings. Scanning electron microscopy micrographs of the fractured surface were also obtained and evaluated. Results. Under monotonic tensile stress, three groups emerged: The laser welds were the strongest, the preceramic joints ranged second, and the postceramic joints were the weakest. Under fatigue stress, the order was as follows: first, the preceramic joints, and second, a group that comprised both postceramic joints and the laser welds. Inspection of the fractographs revealed several fracture modes but no consistent pattern emerged. Microprobe analyses demonstrated minor diffusion processes in the preceramic joints, whereas significant diffusion was observed in the postceramic joints. Clinical Implications. The mechanical resistance data conflicted as to the strength that could be expected of laser welded joints. On the basis of fatigue resistance of the joints, neither infrared solder joints nor laser welds were stronger than torch or furnace soldered joints.
Resumo:
BACKGROUND Advanced heart failure (HF) is associated with high morbidity and mortality; it represents a major burden for the health system. Episodes of acute decompensation requiring frequent and prolonged hospitalizations account for most HF-related expenditure. Inotropic drugs are frequently used during hospitalization, but rarely in out-patients. The LAICA clinical trial aims to evaluate the effectiveness and safety of monthly levosimendan infusion in patients with advanced HF to reduce the incidence of hospital admissions for acute HF decompensation. METHODS The LAICA study is a multicenter, prospective, randomized, double-blind, placebo-controlled, parallel group trial. It aims to recruit 213 out-patients, randomized to receive either a 24-h infusion of levosimendan at 0.1 μg/kg/min dose, without a loading dose, every 30 days, or placebo. RESULTS The main objective is to assess the incidence of admission for acute HF worsening during 12 months. Secondarily, the trial will assess the effect of intermittent levosimendan on other variables, including the time in days from randomization to first admission for acute HF worsening, mortality and serious adverse events. CONCLUSIONS The LAICA trial results could allow confirmation of the usefulness of intermittent levosimendan infusion in reducing the rate of hospitalization for HF worsening in advanced HF outpatients.
Resumo:
Purpose. Spanish retina specialists were surveyed in order to propose actions to decrease deficiencies in real-life neovascular age macular degeneration treatment (nv-AMD). Methods. One hundred experts, members of the Spanish Vitreoretinal Society (SERV), were invited to complete an online survey of 52 statements about nv-AMD management with a modified Delphi methodology. Four rounds were performed using a 5-point Linkert scale. Recommendations were developed after analyzing the differences between the results and the SERV guidelines recommendations. Results. Eighty-seven specialists completed all the Delphi rounds. Once major potential deficiencies in real-life nv-AMD treatment were identified, 15 recommendations were developed with a high level of agreement. Consensus statements to reduce the burden of the disease included the use of treat and extend regimen and to reduce the amount of diagnostic tests during the loading phase and training technical staff to perform these tests and reduce the time between relapse detection and reinjection, as well as establishing patient referral protocols to outside general ophthalmology clinics. Conclusion. The level of agreement with the final recommendations for nv-AMD treatment among Spanish retinal specialist was high indicating that some actions could be applied in order to reduce the deficiencies in real-life nv-AMD treatment.
Resumo:
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.
Resumo:
The applicability of the protein phosphatase inhibition assay (PPIA) to the determination of okadaic acid (OA) and its acyl derivatives in shellfish samples has been investigated, using a recombinant PP2A and a commercial one. Mediterranean mussel, wedge clam, Pacific oyster and flat oyster have been chosen as model species. Shellfish matrix loading limits for the PPIA have been established, according to the shellfish species and the enzyme source. A synergistic inhibitory effect has been observed in the presence of OA and shellfish matrix, which has been overcome by the application of a correction factor (0.48). Finally, Mediterranean mussel samples obtained from Rı´a de Arousa during a DSP closure associated to Dinophysis acuminata, determined as positive by the mouse bioassay, have been analysed with the PPIAs. The OA equivalent contents provided by the PPIAs correlate satisfactorily with those obtained by liquid chromatography–tandem mass spectrometry (LC–MS/MS).
Resumo:
PHO1 has been recently identified as a protein involved in the loading of inorganic phosphate into the xylem of roots in Arabidopsis. The genome of Arabidopsis contains 11 members of the PHO1 gene family. The cDNAs of all PHO1 homologs have been cloned and sequenced. All proteins have the same topology and harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the C-terminal hydrophobic portion. The SPX and EXS domains have been identified in yeast (Saccharomyces cerevisiae) proteins involved in either phosphate transport or sensing or in sorting proteins to endomembranes. The Arabidopsis genome contains additional proteins of unknown function containing either a SPX or an EXS domain. Phylogenetic analysis indicated that the PHO1 family is subdivided into at least three clusters. Reverse transcription-PCR revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers. Analysis of the activity of the promoter of all PHO1 homologs using promoter-beta-glucuronidase fusions revealed a predominant expression in the vascular tissues of roots, leaves, stems, or flowers. beta-Glucuronidase expression is also detected for several promoters in nonvascular tissue, including hydathodes, trichomes, root tip, root cortical/epidermal cells, and pollen grains. The expression pattern of PHO1 homologs indicates a likely role of the PHO1 proteins not only in the transfer of phosphate to the vascular cylinder of various tissues but also in the acquisition of phosphate into cells, such as pollen or root epidermal/cortical cells.
Resumo:
Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated
Resumo:
Rapport de synthèse : La consommation de boissons sucrées contenant du fructose a remarquablement augmenté ces dernières décennies et, on pense qu'elle joue un rôle important dans l'épidémie actuelle d'obésité et de troubles métaboliques. Des études faites sur des rats ont montré qu'une alimentation riche en sucre ou fructose induisait une obésité, une résistance à l'insuline, diabète, dyslipidémie et une hypertension artérielle, tandis que chez l'homme, une alimentation riche en fructose conduit, après quelques jours, au développement d'une hypertryglycémie et une résistance hépatique à l'insuline. Nous avons entrepris une étude de 7 jours d'alimentation riche en fructose ou d'une alimentation contrôlée chez six hommes en bonne santé. Les NEFA plasmatiques et la beta-hydroxybutyrate, l'oxydation nette de lipide (calorimétrie indirecte) et l'oxydation exogène de lipide (13 CO2) ont été surveillés dans des conditions basales, et après un chargement en lipide (huile d'olive marqué au 13C-trioléine), puis durant un stress mental standardisé. La clearance de lactate et les effets métaboliques de la perfusion de lactate exogène ont également été évalués. Nos résultats ont montré que l'alimentation riche en fructose diminue la concentration plasmatique de NEFA, de beta-hydroxybutyrate de même que l'oxydation des lipides dans les conditions de bases et après surcharge en lipides. De plus, l'alimentation riche en fructose amortie l'augmentation des NEFA plasmatique et l'oxydation des lipides exogènes durant le stress mental. Elle augmente également la concentration basale de lactate et la production de lactate de respectivement 31.8% et 53.8%, tandis que la clearance du lactate reste inchangée. L'injection de lactate diminue le taux des NEFA lors de l'alimentation de contrôle et l'alimentation de base, et l'oxydation nette de lipide lors de l'alimentation de contrôle et l'alimentation riche en fructose. Ces résultats indiquent que 7 jours d'alimentation riche en fructose inhibent remarquablement la lipolyse et l'oxydation des lipides. L'alimentation riche en fructose augmente aussi la production de lactate, et l'augmentation de l'utilisation de lactate peut contribuer à supprimer l'oxydation des lipides. Abstact : The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and β-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C] triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and (β-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8%, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block
Resumo:
Inorganic phosphate (Pi) is one of the main nutrients limiting plant growth anddevelopment in many agro-ecosystems. In plants, phosphate is acquired from the soil by theroots, and is then transferred to the shoot via the xylem. In the model plant Arabidopsisthaliana, PHO1 was previously identified as being involved in loading Pi into the xylem ofroots. AtPHO1, belongs to a multigenic family composed of 10 additional members, namelyAtPHO1;H1 to AtPHO1;10. In this study, we aimed at further investigating the role of thePHO1 gene family in Pi homeostasis in plants, and to this end we isolated and characterizedthe PHO1 members of two main model plants, the moss Physcomitrella patens and the riceOryza sativa.In the bryophyte P. patens, bioinformatic analyses revealed the presence of seven AtPHO1homologues, highly similar to AtPHO1. The seven moss PHO1 genes, namely PpPHO1;1 toPpPHO1;7 appeared to be differentially regulated, both at the tissue level and in response toPi status. However only PpPHO1;1 and PpPHO1;7 were specifically up-regulated upon Pistarvation, suggesting a potential role in Pi homeostasis. We also characterized the responseof P. patens to Pi starvation, showing that higher and lower plants share some commonstrategies to adapt to Pi-deficiency.In the second part, focusing on the monocotyledon rice, we showed the existence of threePHO1 homologues OsPHO1;1 to OsPHO1;3, with the unique particularity of each havingNatural Antisense Transcripts (NATs). Molecular analyses revealed that both the sense andthe antisense OsPHO1;2 transcripts were by far the most abundantly expressed transcripts ofthe family, preferentially expressed in the roots. The stable expression of OsPHO1;2 in allconditions tested, in opposition with the highly induced antisense transcript upon Pistarvation, suggest a putative role for the antisense in regulating the sense transcript.Moreover, mutant analyses revealed that OsPHO1;2 plays a key role in Pi homeostasis, intransferring Pi from the root to the shoot. Finally, complementing the pho1 mutant inArabidopsis, characterized by low Pi in the shoot and reduced growth, with the riceOsPHO1;2 gene revealed a new role for PHO1 in Pi signaling. Indeed, the complementedplants showed normal growth, with however low Pi content.
Resumo:
Cardiac morphogenesis and function are known to depend on both aerobic and anaerobic energy-producing pathways. However, the relative contribution of mitochondrial oxidation and glycogenolysis, as well as the determining factors of oxygen demand in the distinct chambers of the embryonic heart, remains to be investigated. Spontaneously beating hearts isolated from stage 11, 20, and 24HH chick embryos were maintained in vitro under controlled metabolic conditions. O(2) uptake and glycogenolytic rate were determined in atrium, ventricle, and conotruncus in the absence or presence of glucose. Oxidative capacity ranged from 0.2 to 0.5 nmol O(2)/(h.microg protein), did not depend on exogenous glucose, and was the highest in atria at stage 20HH. However, the highest reserves of oxidative capacity, assessed by mitochondrial uncoupling, were found at the youngest stage and in conotruncus, representing 75 to 130% of the control values. At stage 24HH, glycogenolysis in glucose-free medium was 0.22, 0.17, and 0.04 nmol glucose U(h.microg protein) in atrium, ventricle, and conotruncus, respectively. Mechanical loading of the ventricle increased its oxidative capacity by 62% without altering glycogenolysis or lactate production. Blockade of glycolysis by iodoacetate suppressed lactate production but modified neither O(2) nor glycogen consumption in substrate-free medium. These findings indicate that atrium is the cardiac chamber that best utilizes its oxidative and glycogenolytic capacities and that ventricular wall stretch represents an early and major determinant of the O(2) uptake. Moreover, the fact that O(2) and glycogen consumptions were not affected by inhibition of glyceraldehyde-3-phosphate dehydrogenase provides indirect evidence for an active glycerol-phosphate shuttle in the embryonic cardiomyocytes.
Resumo:
BACKGROUND CONTEXT: Studies involving factor analysis (FA) of the items in the North American Spine Society (NASS) outcome assessment instrument have revealed inconsistent factor structures for the individual items. PURPOSE: This study examined whether the factor structure of the NASS varied in relation to the severity of the back/neck problem and differed from that originally recommended by the developers of the questionnaire, by analyzing data before and after surgery in a large series of patients undergoing lumbar or cervical disc arthroplasty. STUDY DESIGN/SETTING: Prospective multicenter observational case series. PATIENT SAMPLE: Three hundred ninety-one patients with low back pain and 553 patients with neck pain completed questionnaires preoperatively and again at 3 to 6 and 12 months follow-ups (FUs), in connection with the SWISSspine disc arthroplasty registry. OUTCOME MEASURES: North American Spine Society outcome assessment instrument. METHODS: First, an exploratory FA without a priori assumptions and subsequently a confirmatory FA were performed on the 17 items of the NASS-lumbar and 19 items of the NASS-cervical collected at each assessment time point. The item-loading invariance was tested in the German version of the questionnaire for baseline and FU. RESULTS: Both NASS-lumbar and NASS-cervical factor structures differed between baseline and postoperative data sets. The confirmatory analysis and item-loading invariance showed better fit for a three-factor (3F) structure for NASS-lumbar, containing items on "disability," "back pain," and "radiating pain, numbness, and weakness (leg/foot)" and for a 5F structure for NASS-cervical including disability, "neck pain," "radiating pain and numbness (arm/hand)," "weakness (arm/hand)," and "motor deficit (legs)." CONCLUSIONS: The best-fitting factor structure at both baseline and FU was selected for both the lumbar- and cervical-NASS questionnaires. It differed from that proposed by the originators of the NASS instruments. Although the NASS questionnaire represents a valid outcome measure for degenerative spine diseases, it is able to distinguish among all major symptom domains (factors) in patients undergoing lumbar and cervical disc arthroplasty; overall, the item structure could be improved. Any potential revision of the NASS should consider its factorial structure; factorial invariance over time should be aimed for, to allow for more precise interpretations of treatment success.
Resumo:
MHC class II-peptide multimers are important tools for the detection, enumeration and isolation of antigen-specific CD4+ Τ cells. However, their erratic and often poor performance impeded their broad application and thus in-depth analysis of key aspects of antigen-specific CD4+ Τ cell responses. In the first part of this thesis we demonstrate that a major cause for poor MHC class II tetramer staining performance is incomplete peptide loading on MHC molecules. We observed that peptide binding affinity for "empty" MHC class II molecules poorly correlates with peptide loading efficacy. Addition of a His-tag or desthiobiotin (DTB) at the peptide N-terminus allowed us to isolate "immunopure" MHC class II-peptide monomers by affinity chromatography; this significantly, often dramatically, improved tetramer staining of antigen-specific CD4+ Τ cells. Insertion of a photosensitive amino acid between the tag and the peptide, permitted removal of the tag from "immunopure" MHC class II-peptide complex by UV irradiation, and hence elimination of its potential interference with TCR and/or MHC binding. Moreover, to improve loading of self and tumor antigen- derived peptides onto "empty" MHC II molecules, we first loaded these with a photocleavable variant of the influenza A hemagglutinin peptide HA306-318 and subsequently exchanged it with a poorly loading peptide (e.g. NY-ESO-1119-143) upon photolysis of the conditional ligand. Finally, we established a novel type of MHC class II multimers built on reversible chelate formation between 2xHis-tagged MHC molecules and a fluorescent nitrilotriacetic acid (NTA)-containing scaffold. Staining of antigen-specific CD4+ Τ cells with "NTAmers" is fully reversible and allows gentle cell sorting. In the second part of the thesis we investigated the role of the CD8α transmembrane domain (TMD) for CD8 coreceptor function. The sequence of the CD8α TMD, but not the CD8β TMD, is highly conserved and homodimerizes efficiently. We replaced the CD8α TMD with the one of the interleukin-2 receptor a chain (CD8αTac) and thus ablated CD8α TMD interactions. We observed that ΤΙ Τ cell hybridomas expressing CD8αTacβ exhibited severely impaired intracellular calcium flux, IL-2 responses and Kd/PbCS(ABA) P255A tetramer binding. By means of fluorescence resonance energy transfer experiments (FRET) we established that CD8αTacβ associated with TCR:CD3 considerably less efficiently than CD8αβ, both in the presence and the absence of Kd/PbCS(ABA) complexes. Moreover, we observed that CD8αTacβ partitioned substantially less in lipid rafts, and related to this, associated less efficiently with p56Lck (Lck), a Src kinase that plays key roles in TCR proximal signaling. Our results support the view that the CD8α TMD promotes the formation of CD8αβP-CD8αβ dimers on cell surfaces. Because these contain two CD8β chains and that CD8β, unlike CD8α, mediates association of CD8 with TCR:CD3 as well as with lipid rafts and hence with Lck, we propose that the CD8αTMD plays an important and hitherto unrecognized role for CD8 coreceptor function, namely by promoting CD8αβ dimer formation. We discuss what implications this might have on TCR oligomerization and TCR signaling. - Les multimères de complexes MHC classe II-peptide sont des outils importants pour la détection, le dénombrement et l'isolation des cellules Τ CD4+ spécifiques pour un antigène d'intérêt. Cependant, leur performance erratique et souvent inadéquate a empêché leur utilisation généralisée, limitant ainsi l'analyse des aspects clés des réponses des lymphocytes Τ CD4+. Dans la première partie de cette thèse, nous montrons que la cause principale de la faible efficacité des multimères de complexes MHC classe II-peptide est le chargement incomplet des molécules MHC par des peptides. Nous montrons également que l'affinité du peptide pour la molécule MHC classe II "vide" n'est pas nécessairement liée au degré du chargement. Grâce à l'introduction d'une étiquette d'histidines (His-tag) ou d'une molécule de desthiobiotine à l'extrémité N-terminale du peptide, des monomères MHC classe II- peptide dits "immunopures" ont pu être isolés par chromatographic d'affinité. Ceci a permis d'améliorer significativement et souvent de façon spectaculaire, le marquage des cellules Τ CD4+ spécifiques pour un antigène d'intérêt. L'insertion d'un acide aminé photosensible entre l'étiquette et le peptide a permis la suppression de l'étiquette du complexe MHC classe- Il peptide "immunopure" par irradiation aux UV, éliminant ainsi de potentielles interférences de liaison au TCR et/ou au MHC. De plus, afin d'améliorer le chargement des molécules MHC classe II "vides" avec des peptides dérivés d'auto-antigènes ou d'antigènes tumoraux, nous avons tout d'abord chargé les molécules MHC "vides" avec un analogue peptidique photoclivable issu du peptide HA306-318 de l'hémagglutinine de la grippe de type A, puis, sous condition de photolyse, nous l'avons échangé avec de peptides à chargement faible (p.ex. NY-ESO-1119-143). Finalement, nous avons construit un nouveau type de multimère réversible, appelé "NTAmère", basé sur la formation chélatante reversible entre les molécules MHC-peptide étiquettés par 2xHis et un support fluorescent contenant des acides nitrilotriacetiques (NTA). Le marquage des cellules Τ CD4+ spécifiques pour un antigène d'intérêt avec les "NTAmères" est pleinement réversible et permet également un tri cellulaire plus doux. Dans la deuxième partie de cette thèse nous avons étudié le rôle du domaine transmembranaire (TMD) du CD8α pour la fonction coréceptrice du CD8. La séquence du TMD du CD8α, mais pas celle du TMD du CD8β, est hautement conservée et permet une homodimérisation efficace. Nous avons remplacé le TMD du CD8α avec celui de la chaîne α du récepteur à l'IL-2 (CD8αTac), éliminant ainsi les interactions du TMD du CD8α. Nous avons montré que les cellules des hybridomes Τ T1 exprimant le CD8αTacβ présentaient une atteinte sévère du flux du calcium intracellulaire, des réponses d'IL-2 et de la liaison des tétramères Kd/PbCS(ABA) P255A. Grâce aux expériences de transfert d'énergie entre molécules fluorescentes (FRET), nous avons montré que l'association du CD8αTacβ avec le TCR:CD3 est considérablement moins efficace qu'avec le CD8αβ, et ceci aussi bien en présence qu'en absence de complexes Kd/PbCS(ABA). De plus, nous avons observé que le CD8αTacβ se distribuait beaucoup moins bien dans les radeaux lipidiques, engendrant ainsi, une association moins efficace avec p56Lck (Lck), une kinase de la famille Src qui joue un rôle clé dans la signalisation proximale du TCR. Nos résultats soutiennent l'hypothèse que le TMD du CD8αβ favorise la formation des dimères de CD8αβ à la surface des cellules. Parce que ces derniers contiennent deux chaînes CD8β et que CD8β, contrairement à CD8α, favorise l'association du CD8 au TCR:CD3 aussi bien qu'aux radeaux lipidiques et par conséquent à Lck, nous proposons que le TMD du CD8α joue un rôle important, jusqu'alors inconnu, pour la fonction coreceptrice du CD8, en encourageant la formation des dimères CD8αβ. Nous discutons des implications possibles sur l'oligomerisation du TCR et la signalisation du TCR.
Resumo:
Purpose: To determine whether the need for retreatment after an initial phase of 3 monthly intravitreal injections of ranibizumab shows an intra-individual regular rhythm and to what degree it varies between different patients. Methods: Prospective study with 42 patients with exudative AMD, treatment naïve. Loading dose of 3 monthly doses of ranibizumab (0,5 mg), followed by a 12 months pro re nata (PRN) regimen according to early exudative signs on HD-OCT Cirrus, Zeiss. The follow-up visits were intensified (week 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, etc after each injection) in order to detect recurrences early, and injection followed within 3 days in cases of subretinal fluid, cysts, or central thickness increase of>50microns. Intervals were calculated between injections for the 12 month follow-up with PRN treatment. Variability was expressed as standard deviation (SD). Results: Visual acuity (VA) improved from a mean ETDRS score of 61.6 (SD 10.8) at baseline to 68.0 (SD 10.2) at month 3 and to 74.7(SD 9.0) at month 12. The 15 patients who have already completed the study showed maintenance of the VA improvement. Central foveal thickness improved from a mean value of 366 microns (baseline) to 253 microns (month 3), well maintained thereafter. Mean number of injections was 8.8 (SD 3.5,range 0-12) per 12 months of follow-up (after 3 doses), with mean individual treatment-recurrence (TR) intervals ranging from 28->365 days (mean 58). Intraindividual variability of TR intervals (SD) was 7.1 days as a mean value (range 1.7¡V22.6). It ranged within 20% of the mean intra-individual interval for 30 (91%) and within 15% for 21 patients (64%). The first interval was within 1 week of the mean intra-individual interval in 64% and within 2 weeks in 89% of patients. Conclusions: The majority of AMD patients showed a relatively stable rhythm for PRN injections of ranibizumab after initial loading phase, associated with excellent functional/anatomical results. The initial interval last loading dose-first recurrence may have a predictive value for further need of treatment, potentially facilitating follow-up and patient care.