899 resultados para Load-cycle analysis
Resumo:
A finite element model is developed to predict the stress-strain behaviour of particulate composites with fully unbonded filler particles. This condition can occur because of the lack of adhesion property of the filler surface. Whilst part of the filler particle is separated from the matrix, another section of filler keeps in contact with the matrix because of the lateral compressive displacement of the matrix. The slip boundary condition is imposed on the section of the interface that remains closed. The states of stress and displacement fields are obtained. The location of any further deformation through crazing or shear band formation is identified. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the interface significantly. Whereas this might lead to slightly higher strength, it decreases the load transfer efficiency and stiffness of this type of composite.
Resumo:
A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.
Resumo:
Knowledge on the life span of the riveting dies used in the automotive industry is sparse. It is often the case that only when faulty products are produced are workers aware that their tool needs to be changed. This is of course costly both in terms of time and money. Responding to this challenge, this paper proposes a methodology which integrates wear and stress analysis to quantify the life of a riveting die. Experiments are carried out to measure the applied load required to split a rivet. The obtained results (i.e. force curves) are used to validate the wear mechanisms of the die observed using scanning electron microscopy. Sliding, impact, and adhesive wears are observed on the riveting die after a certain number of riveting cycles. The stress distribution on the die during riveting is simulated using a finite element (FE) approach. In order to confirm the accuracy of the FE model, the experimental force results are compared with the ones produced from FE simulation. The maximum and minimum von Mises' stresses generated from the FE model are input into a Goodman diagram and an S-N curve to compute the life of the riveting die. It is found that the riveting die is predicted to run for 4 980 000 cycles before failure.
Resumo:
The work aims at assessing the success of Brunetta’s reform (Legislative Decree n. 150/2009), a far-reaching reform that aimed at improving both organizational and individual performance in Italian public administration through a specific planning and control process (the performance cycle) and most of all through two new tools, Performance Plan and Performance Report. The success of the reform is assessed, with particular emphasis on local governments, analyzing the diffusion and use of these new tools. The study has been conducted using a deductive-inductive methodology. Thus, after a study of managerial reforms in Italy and performance measurement literature, a possible model (PerformEL Model) local governments could follow to draw up Performance Plan and Report as effective tools for performance measurement has been designed (deductive phase). Performance Plans 2011-2013 and Performance Report 2011 downloaded from Italian big sized municipalities’ websites have been analyzed in the light of PerformEL Model, to assess the diffusion of the documents and their coherence with legal requirements and suggestions from literature (inductive phase). Data arising from the empirical analysis have been studied to evaluate the diffusion and the effectiveness of big sized municipalities’ Performance Plans and Reports as performance measurement tools and thus to assess the success of the reform (feedback phase). The study shows a scarce diffusion of the documents; they are mostly drew up because of their compulsoriness or to gain legitimization. The results testify the failure of Brunetta’s reform, at least with regard to local governments.
Resumo:
Modal analysis is a popular approach used in structural dynamic and aeroelastic problems due to its efficiency. The response of a structure is compo
sed of the sum of orthogonal eigenvectors or modeshapes and corresponding modal frequencies. This paper investigates the importance of modeshapes on the aeroelastic response of the Goland wing subject to structural uncertainties. The wing undergoes limit cycle oscillations (LCO) as a result of the inclusion of polynomial stiffness nonlinearities. The LCO computations are performed using a Harmonic Balance approach for speed, the modal properties of the system are extracted from MSC NASTRAN. Variability in both the wing’s structure and the store centre of gravity location is investigated in two cases:- supercritical and subcritical type LCOs. Results show that the LCO behaviour is only sensitive to change in modeshapes when the nature of the modes are changing significantly.
Resumo:
Background: To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland.
Design: A case series of sector RP in a tertiary ocular genetics clinic.
Participants: Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent.
Methods: The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced.
Main Outcome Measure: Rhodopsin mutational status.
Results: A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO.
Conclusions: The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.
Resumo:
Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.
Resumo:
This work proposes a extends a novel approach to compute tran sonic Limit Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a methodology to determine the unknown frequency of oscillations using an implicit for- mulation of the HB method to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and respective linear structural models is used to exercise the new method. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency.
Resumo:
This work investigates limit cycle oscillations in the transonic regime. A novel approach to predict Limit Cycle Oscillations using high fidelity analysis is exploited to accelerate calculations. The method used is an Aeroeasltic Harmonic Balance approach, which has been proven to be efficient and able to predict periodic phenomena. The behaviour of limit cycle oscillations is analysed using uncertainty quantification tools based on polynomial chaos expansions. To improve the efficiency of the sampling process for the polynomial-chaos expansions an adaptive sampling procedure is used. These methods are exercised using two problems: a pitch/plunge aerofoil and a delta-wing. Results indicate that Mach n. variability is determinant to the amplitude of the LCO for the 2D test case, whereas for the wing case analysed here, variability in the Mach n. has an almost negligible influence in amplitude variation and the LCO frequency variability has an almost linear relation with Mach number. Further test cases are required to understand the generality of these results.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
Resumo:
An understanding of the mechanisms underlying the development of resistance to chemotherapy treatment is a gateway to the introduction of novel therapies and improved outcomes for women presenting with ovarian cancer (OC). The desired apoptotic death post-chemotherapy depends on an intact and fully functioning cell cycle machinery.
In this study we demonstrate that stable expression of miR-433 renders OC cells more resistant to paclitaxel treatment. Interestingly, only cells with the highest miR-433 survived paclitaxel suggesting the possible role of miR-433 in cancer recurrence. Importantly, for the first time we demonstrate that miR 433 induces cellular senescence, exemplified by a flattened morphology, the downregulation of phosphorylated Retinoblastoma (p Rb) and increased β galactosidase activity. Surprisingly, miR 433 induced senescence was independent of two well recognised senescent drivers: p21 and p16. Further in silico analysis followed by in vitro experiments identified CKD6 as a novel miR-433 target gene possibly explaining the observed p21 and p16-independent induction of cellular senescence. Another in silico identified miR-433 target gene was CDC27, a protein involved in the regulation of the cell cycle during mitosis. We demonstrate that the overexpression of pre-miR-433 leads to the downregulation of CDC27 in vitro revealing a novel interaction between miR-433 and CDC27, an integral cell cycle regulating protein.
Interestingly, miR-433 expressing cells also demonstrated an ability to impact their tumour microenvironment. We show that miR-433 is present in exosomes released from miR-433 overexpressing and high miR-433 naïve cells. Moreover, growth condition media (GCM) harvested from cells with high miR-433 have higher levels of IL-6 and IL-8, two key cytokines involved in the senescence associated secretory phenotype (SASP). Importantly, GCM from miR-433-enriched cells repressed the growth of co-cultured cells with initial studies showing a GCM-dependent induction of chemoresistance.
In conclusion, data in this study highlights how the aberrant expression miR-433 contributes to chemoresistance in OC cells. We postulate that standard chemotherapy, particularly paclitaxel, used to treat women with OC may have an attenuated ability to kill cells harbouring increased levels of miR-433, allowing for a subsequent chemoresistant phenotype post-therapy.
Resumo:
This work proposes a novel approach to compute transonic limit-cycle oscillations using high-fidelity analysis. Computational-Fluid-Dynamics based harmonic balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling harmonic balance methods to accurately capture limit-cycle oscillations; this is achieved by defining a frequency-updating procedure based on a coupled computational-fluid-dynamics/computational-structural-dynamics harmonic balance formulation to find the limit-cycle oscillation condition. A pitch/plunge airfoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both limit-cycle oscillation amplitude and frequency while producing at least a one-order-of-magnitude reduction in computational time.
Resumo:
Globally vehicle operators are experiencing rising fuel costs and increased
running expenses as governments around the world attempt to decrease carbon dioxide emissions and fossil fuel consumption, due to global warming and the drive to reduce dependency on fossil fuels. Recent advances in hybrid vehicle design have made great strides towards more efficient operation, with regenerative braking being widely used to capture otherwise lost energy. In this paper a hybrid series bus is developed a step further, by installing another method of energy capture on the vehicle. In this case, it is in the form of the Organic Rankine Cycle (ORC). The waste heat expelled to the exhaust and coolant streams is recovered and converted to electrical energy which is then stored in the hybrid vehicles batteries. The electrical energy can then be used for the auxiliary power circuit or to assist in vehicle propulsion, thus reducing the load on the engine, thereby improving the overall fuel economy of the vehicle and reducing carbon dioxide emissions.
Resumo:
Grid operators and electricity retailers in Ireland manage peak demand, power system balancing and grid congestion by offering relevant incentives to consumers to reduce or shift their load. The need for active consumers in the home using smart appliances has never been greater, due to increased variable renewable generation and grid constraints. In this paper an aggregated model of a single compressor fridge-freezer population is developed. A price control strategy is examined to quantify and value demand response savings during a representative winter and summer week for Ireland in 2020. The results show an average reduction in fridge-freezer operating cost of 8.2% during winter and significantly lower during summer in Ireland. A peak reduction of at least 68% of the average winter refrigeration load is achieved consistently during the week analysed using a staggering control mode. An analysis of the current ancillary service payments confirms that these are insufficient to ensure widespread uptake by the small consumer, and new mechanisms need to be developed to make becoming an active consumer attractive. Demand response is proposed as a new ancillary service called ramping capability, as the need for this service will increase with more renewable energy penetration on the power system.
Resumo:
There are many uncertainties in forecasting the charging and discharging capacity required by electric vehicles (EVs) often as a consequence of stochastic usage and intermittent travel. In terms of large-scale EV integration in future power networks this paper develops a capacity forecasting model which considers eight particular uncertainties in three categories. Using the model, a typical application of EVs to load levelling is presented and exemplified using a UK 2020 case study. The results presented in this paper demonstrate that the proposed model is accurate for charge and discharge prediction and a feasible basis for steady-state analysis required for large-scale EV integration.