944 resultados para Liquid filled dye doped hollow polymer optical fibre
Resumo:
We report a new concept of biochemical sensor device based on long-period grating structures UV-inscribed in D-fiber. The surrounding-medium refractive index sensitivity of the devices has been enhanced significantly by a hydrofluoric acid etching process. The devices have been used to measure the sugar concentrations showing clearly an encoding relation between the chemical concentration and the grating spectral response, demonstrating their capability for potential biochemical sensing applications.
Resumo:
Abstract—We report an actively mode-locked tunable dual-wavelength erbium-doped fiber laser that uses parallel amplifiers in order to minimize gain cross-saturation effects. We obtain extremely stable, room-temperature dual-wavelength operation at a modulator drive frequency of 1035.38 MHz (corresponding pulsewidths of 115 and 130 ps). Furthermore, we can independently tune the power and wavelength of each lasing output signal without affecting overall output stability. In particular, we achieve a wavelength separation as narrow as 0.3 nm.
Resumo:
We describe some recently developed fibre grating sensing devices (Bragg and long-period types) and applications with emphasis on simultaneous measurement of multiple measurands using combinational grating structures, and the realisation of ultra-high sensitivity sensors utilising the quadratic dispersion of long-period grating structure.
Resumo:
We experimentally demonstrate a Raman-Assisted Fibre Optical Parametric Amplifier (RA-FOPA) with 20dB net gain using wavelength division multiplexed signals. We report amplification of 10×58Gb/s 100GHz-spaced QPSK signals and show that by appropriate tuning of the parametric pump power and frequency, gain improvement of up to 5dB can be achieved for the RA-FOPA compared with combined individual contributions from the parametric and Raman pumps. We compare the RAFOPA with an equivalent-gain conventional FOPA and find that four-wave mixing crosstalk is substantially reduced by up to 5.8 ± 0.4dB using the RA-FOPA. Worst-case performance penalty of the RA-FOPA is found to be only 1.0 ± 0.2dB over all measured OSNRs, frequencies and input powers, making it an attractive proposal for future communications systems.
Resumo:
We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.
Resumo:
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.
Resumo:
Using three fibre gratings with excessively tilted structures in the cavity, we have experimentally demonstrated a multiwavelength switchable erbium-doped fibre ring laser system. The three tilted gratings act as in-fibre polariser and polarisation dependent loss filters to induce the polarisation hole burning effect in the cavity for the operation of the laser at single, double, triple and quadruple wavelengths. The laser system has demonstrated good stability under room temperature conditions and also achieved a high degree of polarization (~30dB), high optical signal to noise ratio (up to 63dB) and high side mode suppression (~50dB). The system has also been investigated for temperature and strain sensing by subjecting the seeding fibre Bragg gratings (FBG) to temperature and strain variations. Since the loss band of the polarisation dependent loss filter is broader than the bandwidth of the seeding FBG, the laser output shifts in wavelength with the applied temperature and strain. The fibre ring laser has shown good responses to the temperature and strain, providing sensitivities of approximately 11.7 pm/°C and 0.85pm/µe respectively.
Resumo:
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
WDM signal degradation from pump phase-modulation in a one-pump 20dB net-gain fibre optical parametric amplifier is experimentally and numerically characterised for the first time using 10x59Gb/s QPSK signals.
Resumo:
We demonstrate erbium- and thulium-doped fibre ring lasers mode-locked with a single-walled carbon nanotubes (SWCNT) operating at normal intracavity dispersion and high nonlinearity. The lasers generate transform-limited picosecond inversed-modified soliton pulses. © 2014 OSA.
Resumo:
We propose an artificial neural network (ANN) equalizer for transmission performance enhancement of coherent optical OFDM (C-OOFDM) signals. The ANN equalizer showed more efficiency in combating both chromatic dispersion (CD) and single-mode fibre (SMF)-induced non-linearities compared to the least mean square (LMS). The equalizer can offer a 1.5 dB improvement in optical signal-to-noise ratio (OSNR) compared to LMS algorithm for 40 Gbit/s C-OOFDM signals when considering only CD. It is also revealed that ANN can double the transmission distance up to 320 km of SMF compared to the case of LMS, providing a nonlinearity tolerance improvement of ∼0.7 dB OSNR.
Resumo:
We overview our recent results on polarisation dynamics of vector solitons in erbium doped fibre laser mode locked with carbon nanotubes. Our experimental and theoretical study revealed new families of vector solitons for fundamental and bound-state soliton operations. The observed scenario of the evolution of the states of polarisation (SOPs) on the Poincare sphere includes fast polarisation switching between two and three SOPs along with slow SOP evolution on a double scroll chaotic attractor. The underlying physics presents an interplay between effects of birefringence of the laser cavity and light induced anisotropy caused by polarisation hole burning. © 2014 IEEE.
Resumo:
We numerically show the feasibility of Nyquist optical pulse generation in a mode-locked fibre laser with an in-cavity flat-top spectral filter. The proposed scheme offers the possibility to generate high-quality sinc-shaped pulses with tunable bandwidth.