860 resultados para Line strengths
Resumo:
Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.
Resumo:
We model monopolistic competition in product lines, assuming that consumer heterogeneity is the result rather than the cause of product variety. Our results contradict some well-known policy implications yielded by the standard monopolistic competition framework.
Resumo:
This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study
Resumo:
The present study compared production and on-line comprehension of definite articles and third person direct object clitic pronouns in Greek-speaking typically developing, sequential bilingual (L2-TD) children and monolingual children with specific language impairment (L1-SLI). Twenty Turkish Greek L2-TD children, 16 Greek L1-SLI children, and 31 L1-TD Greek children participated in a production task examining definite articles and clitic pronouns and, in an on-line comprehension task, involving grammatical sentences with definite articles and clitics and sentences with grammatical violations induced by omitted articles and clitics. The results showed that the L2-TD children were sensitive to the grammatical violations despite low production. In contrast, the children with SLI were not sensitive to clitic omission in the on-line task, despite high production. These results support a dissociation between production and on-line comprehension in L2 children and for impaired grammatical representations and lack of automaticity in children with SLI. They also suggest that on-line comprehension tasks may complement production tasks by differentiating between the language profiles of L2-TD children and children with SLI.
Resumo:
In this paper, we show that periodic auroral arc structures are seen at the location of one particular auroral substorm onset for the 15 min preceding onset, suggesting that field line resonances should be considered a strong candidate for triggering substorm onset. Irrespective of whether this field line resonance is coincidentally or causally linked to this substorm onset, the characteristics of the field line resonance can be used to remote sense the characteristics of the geomagnetic field line that supports substorm onset. In this instance, the eigenfrequency of this resonance is around 12 mHz. Interestingly, however, there is no evidence of this field line resonance in a seven satellite major Time History of Events and Macroscale Interactions during Substorms (THEMIS)-GOES conjunction, ranging from geosynchronous orbit to ~30 RE. However, using space-based cross-phase measurements of the local field line eigenfrequency at the inner THEMIS locations, we find that the local field line eigenfrequency is 6–10 mHz. Hence, we can reliably say that this 12 mHz Field Line Resonance (FLR) must lie inside of THEMIS locations. Our conclusion is that a high-m field line resonance can both represent a strong candidate for a trigger for substorm onset, as first proposed by Samson et al. (1992), and that its characteristics can provide invaluable information as to where substorm onset occurs in the magnetosphere.
Resumo:
This article uses large-scale international data to examine how much autonomy organizations have to assign human resource management responsibilities to line managers, as indicated in the prescriptions of the literature. We use data from 11 countries to explore the impact of a variety of internal characteristics of organizations and the kind of economy in which they operate. We find that around half of the organizations assign HRM responsibilities to the line and that organizations appear to have considerable latitude in making choices in this area. Organizations in the Nordic economies are most likely to assign responsibilities for HRM to the line and those in the liberal market economies are the least likely to do so. In any economy, larger organizations, unionized organizations, and those with strategically positioned HRM departments are the least likely to allocate responsibilities for HRM to the line. We discuss the implications of our findings for future research and for practice.
Resumo:
We report on the first realtime ionospheric predictions network and its capabilities to ingest a global database and forecast F-layer characteristics and "in situ" electron densities along the track of an orbiting spacecraft. A global network of ionosonde stations reported around-the-clock observations of F-region heights and densities, and an on-line library of models provided forecasting capabilities. Each model was tested against the incoming data; relative accuracies were intercompared to determine the best overall fit to the prevailing conditions; and the best-fit model was used to predict ionospheric conditions on an orbit-to-orbit basis for the 12-hour period following a twice-daily model test and validation procedure. It was found that the best-fit model often provided averaged (i.e., climatologically-based) accuracies better than 5% in predicting the heights and critical frequencies of the F-region peaks in the latitudinal domain of the TSS-1R flight path. There was a sharp contrast however, in model-measurement comparisons involving predictions of actual, unaveraged, along-track densities at the 295 km orbital altitude of TSS-1R In this case, extrema in the first-principle models varied by as much as an order of magnitude in density predictions, and the best-fit models were found to disagree with the "in situ" observations of Ne by as much as 140%. The discrepancies are interpreted as a manifestation of difficulties in accurately and self-consistently modeling the external controls of solar and magnetospheric inputs and the spatial and temporal variabilities in electric fields, thermospheric winds, plasmaspheric fluxes, and chemistry.
Resumo:
Of all the various definitions of the polar cap boundary that have been used in the past, the most physically meaningful and significant is the boundary between open and closed field lines. Locating this boundary is very important as it defines which regions and phenomena are on open field lines and which are on closed. This usually has fundamental implications for the mechanisms invoked. Unfortunately, the open-closed boundary is usually very difficult to identify, particularly where it maps to an active reconnection site. This paper looks at the topological reconnection classes that can take place, both at the magnetopause and in the cross-tail current sheet and discusses the implications for identifying the open-closed boundary when reconnection is giving velocity filter dispersion of signatures. On the dayside, it is shown that the dayside boundary plasma sheet and low-latitude boundary layer precipitations are well explained as being on open field lines, energetic ions being present because of reflection of central plasma sheet ions off the two Alfvén waves launched by the reconnection site (the outer one of which is the magnetopause). This also explains otherwise anomalous features of the dayside convection pattern in the cusp region. On the nightside, similar considerations place the open-closed boundary somewhat poleward of the velocity-dispersed ion structures which are a signature of the plasma sheet boundary layer ion flows in the tail.
Resumo:
We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.
Resumo:
A method for estimating both the Alfvén speed and the field-aligned flow of the magnetosheath at the magnetopause reconnection site is presented. The method employs low-altitude cusp ion observations and requires the identification of a feature in the cusp ion spectra near the low-energy cutoff which will often be present for a low-latitude dayside reconnection site. The appearance of these features in data of limited temporal, energy, and pitch angle resolution is illustrated by using model calculations of cusp ion distribution functions. These are based on the theory of ion acceleration at the dayside magnetopause and allow for the effects on the spectrum of flight times of ions precipitating down newly opened field lines. In addition, the variation of the reconnection rate can be evaluated, and comparison with ground-based observations of the corresponding sequence of transient events allows the field-aligned distance from the ionosphere to the reconnection site to be estimated.
Resumo:
We present an analysis of a “quasi-steady” cusp ion dispersion signature observed at low altitudes. We reconstruct the field-parallel part of the Cowley-D ion distribution function, injected into the open LLBL in the vicinity of the reconnection X-line. From this we find the field-parallel magnetosheath flow at the X-line was only 20 ± 60 km s−1, placing the reconnection site close to the flow streamline which is perpendicular to the magnetosheath field. Using interplanetary data and assuming the subsolar magnetopause is in pressure balance, we derive a wealth of information about the X-line, including: the density, flow, magnetic field and Alfvén speed of the magnetosheath; the magnetic shear across the X-line; the de-Hoffman Teller speed with which field lines emerge from the X-line; the magnetospheric field; and the ion transmission factor across the magnetopause. The results indicate that some heating takes place near the X-line as the ions cross the magnetopause, and that sheath densities may be reduced in a plasma depletion layer. We also compute the reconnection rate. Despite its quasi-steady appearance on an ion spectrogram, this cusp is found to reveal a large pulse of enhanced reconnection rate.
Resumo:
In the auroral zone, ionospheric plasma often moves horizontally at more than 1 km s−1, driven by magnetospheric electric fields, but it has usually been assumed that vertical velocities are much smaller. On occasions, however, plasma has been seen to move upwards along the magnetic field line at several hundred m s−1. These upward velocities are associated with electric fields strong enough to heat the ion population and drive it into a non-thermal state1,2. Here we report observations of substantial upwards acceleration of plasma, to velocities as high as 500 m s−1. An initial upthrust was provided by a combined upwelling of the neutral atmosphere and ionosphere but the continued acceleration at greater heights is explained by a combination of enhanced plasma pressure and the 'hydrodynamic mirror force'3. This acceleration marks an important stage in the transport of plasma from the ionosphere into the magnetosphere.
Resumo:
The energy of the vh9/2 orbital in nuclei above N = 82 drops rapidly in energy relative to the vf7/2 orbital as the occupancy of the πh11/2 orbital increases. These two neutron orbitals become nearly degenerate as the proton drip line is approached. In this work, we have discovered the new nuclides 161Os and 157W, and studied the decays of the proton emitter 160Re in detail. The 161Os and 160Re nuclei were produced in reactions of 290, 300 and 310 MeV 58Ni ions with an isotopically enriched 106Cd target, separated in‐flight using the RITU separator and implanted into the GREAT spectrometer. The 161Os α a decays populated the new nuclide 157W, which decayed by β‐particle emission. The β decay fed the known α‐decaying 1/2+ and 11/2− states in 157Ta, which is consistent with a vf7/2 ground state in 157W. The measured α‐decay energy and half‐life for 161Os correspond to a reduced α‐decay width that is compatible with s‐wave α‐particle emission, implying that its ground state is also a vf7/2 state. Over 7000 160Re nuclei were produced and the γ decays of a new isomeric state feeding the πd3/2 level in 160Re were discovered, but no evidence for the proton or a decay of the expected πh11/2 state could be found. The isomer decays offer a natural explanation for this non‐observation and provides a striking example of the influence of the near degeneracy of the vh9/2 and vf7/2 orbitals on the properties of nuclei in this region.