941 resultados para Light Scattering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em estudos de terapia gênica e vacinação por DNA, a eficiência e a segurança dos vetores que transportam o material genético terapêutico possuem papel fundamental. Vetores não virais são considerados mais seguros, mas menos eficientes em relação aos vetores virais. Em parte, isso se deve à falta de estudos sistemáticos e comparativos no que diz respeito às características físico-químicas desses vetores quando em soluções biológicas e o efeito delas sobre a eficiência de entrega gênica. O objetivo deste trabalho é avaliar o efeito do pH, da força iônica e do tipo tampão de complexação sobre as características físico-químicas de nanopartículas pDNA-protamina e pDNA-protamina-lipofectamina, visando à entrega gênica para diferentes linhagens celulares. Para isso, nanopartículas formadas em diferentes condições foram caracterizadas através de ensaios de espalhamento dinâmico de luz (DLS) e potencial zeta. Os estudos indicaram que o pH, a força iônica, o tipo de tampão e a presença de meio de cultura e soro no ambiente de complexação alteram significativamente o tamanho, a polidispersidade e o potencial zeta das partículas formadas. Finalmente, buscou-se avaliar o efeito dessas características sobre a eficiência de transfecção in vitro de células de macrófagos IC21 e células HeLa. Os estudos de transfecção em células Hela indicam que tanto a composição como as condições de formação das partículas influenciam significativamente a eficiência de transfecção.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O câncer é uma das maiores causas de mortalidade no Brasil e no mundo, com potencial de crescimento nas próximas décadas. Um tipo de tratamento promissor é a hipertermia magnética, procedimento no qual as células tumorais morrem pelo efeito do calor gerado por partículas magnéticas após a aplicação de campo magnético alternado em frequências adequadas. Tais partículas também são capazes de atuar como agentes de contraste para imageamento por ressonância magnética, um poderoso método de diagnóstico para identificação de células neoplásicas, formando a combinação conhecida como theranostics (terapia e diagnóstico). Neste trabalho foram sintetizadas nanopartículas de óxido de ferro por método de coprecipitação com posterior encapsulação por técnica de nano spray drying, visando sua aplicação no tratamento de câncer por hipertermia e como agente de contraste para imageamento por ressonância magnética. Para a encapsulação foram utilizadas matrizes poliméricas de Maltodextrina com Polissorbato 80, Pluronic F68, Eudragit® S100 e PCL com Pluronic F68, escolhidos com o intuito de formar partículas que dispersem bem em meio aquoso e que consigam atingir alvo tumoral após administração no corpo do paciente. Parâmetros de secagem pelo equipamento Nano Spray Dryer, como temperatura, solvente e concentração de reagentes, foram avaliados. As partículas formadas foram caracterizadas por Microscopia Eletrônica de Varredura, Difração de Raios-X, Análise Termogravimétrica, Espalhamento de Luz Dinâmico, Espectroscopia de Infravermelho, magnetismo quanto a magnetização de saturação e temperatura, citotoxicidade e potencial de aquecimento. Tais procedimentos indicaram que o método de coprecipitação produziu nanopartículas de magnetita de tamanho em torno 20 nm, superparamagnéticas a temperatura ambiente, sem potencial citotóxico. A técnica de nano spray drying foi eficiente para a formação de partículas com tamanho em torno de 1 μm, também superparamagnéticas, biocompatíveis e com propriedades magnéticas adequadas e para aplicações pretendidas. Destaca-se a amostra com Pluronic, OF-10/15-1P, que apresentou magnetização de saturação de 68,7 emu/g e interação específica com células tumorais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento de algoritmos computacionais para a obtenção de distribuições de tamanho de partícula em dispersões e que utilizam dados espectroscópicos em tempo real e in-line a partir de sensores permitirá uma variedade de aplicações, como o monitoramento de propriedades em fluidos de corte industriais, acompanhamento de processos de polimerização, tratamento de efluentes e sensoriamento atmosférico. O presente estudo tem como objetivo a implementação e comparação de técnicas para resolução de problemas de inversão, desenvolvendo algoritmos que forneçam distribuição de tamanho de partículas em dispersões a partir de dados de espectroscopia UV-Vis-Nir (Ultravioleta, Visível e Infravermelho próximo). Foram implementadas quatro técnicas, sendo uma delas um método alternativo sem a presença de etapas de inversão. Os métodos que utilizaram alguma técnica de inversão evidenciaram a dificuldade em se obter distribuições de tamanho de gotas (DTG) de boa qualidade, enquanto o método alternativo foi aquele que se mostrou mais eficiente e confiável. Este estudo é parte de um programa cooperativo entre a Universidade de São Paulo e a Universidade de Bremen chamado programa BRAGECRIM (Brazilian German Cooperative Research Initiative in Manufacturing) e é financiado pela FAPESP, CAPES, FINEP e CNPq (Brasil) e DFG (Alemanha).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O mercado atual exige das indústrias siderúrgicas aços de melhor qualidade produzidos por meio de processos que causem menor impacto ao meio ambiente. Dessa forma, este trabalho teve como objetivo reciclar o resíduo de mármore gerado na indústria de rochas ornamentais, que possui em sua composição óxido de cálcio (CaO) e óxido de magnésio (MgO). O CaO é suficiente para substituir a cal nas escórias e o MgO contribui para a diminuição do desgaste dos refratários, através do emprego do resíduo no processo produtivo do aço. Além disso, foi realizada a substituição da fluorita por óxido de boro como fluxante na composição de misturas dessulfurantes. O resíduo de mármore foi caracterizado utilizando as seguintes técnicas: análise química via EDXFR, análise granulométrica via espalhamento de luz, área de superfície específica pelo método BET, difração de raios-X, microscopia eletrônica de varredura (MEV) e análise de micro-regiões por EDS. Visando verificar a eficiência na dessulfuração, foram formuladas misturas sintéticas utilizando a cal convencional ou resíduo de mármore, e a fluorita ou o óxido de boro. As misturas foram formuladas com o auxílio dos programas de termodinâmica computacional, Thermo-Calc e FactSage. Estas misturas foram adicionadas no aço fundido a temperatura de 1600°C sob atmosfera de argônio e agitadas por meio de um rotor de alumina. Amostras de metal foram retiradas para verificar a variação do teor de enxofre durante o experimento. O resíduo de mármore caracterizado, apresentou em sua composição 40% de CaO e 14% de MgO, na forma dos carbonatos CaCO3 e MgCO3. Obteve uma perda de massa de 42,1%, na forma de CO2 a temperatura de 780°C. Os experimentos mostraram que, as misturas testadas apresentaram, na maioria dos casos, eficiência de dessulfuração acima de 60%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kunjin virus is a member of the Flavivirus genus and is an Australian variant of West Nile virus. The C-terminal domain of the Kunjin virus NS3 protein displays helicase activity. The protein is thought to separate daughter and template RNA strands, assisting the initiation of replication by unwinding RNA secondary structure in the 3' nontranslated region. Expression, purification and preliminary crystallographic characterization of the NS3 helicase domain are reported. It is shown that Kunjin virus helicase may adopt a dimeric assembly in absence of nucleic acids, oligomerization being a means to provide the helicases with multiple nucleic acid-binding capability, facilitating translocation along the RNA strands. Kunjin virus NS3 helicase domain is an attractive model for studying the molecular mechanisms of flavivirus replication, while simultaneously providing a new basis for the rational development of anti-flaviviral compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The successful development and optimisation of optically-driven micromachines will be greatly enhanced by the ability to computationally model the optical forces and torques applied to such devices. In principle, this can be done by calculating the light-scattering properties of such devices. However, while fast methods exist for scattering calculations for spheres and axisymmetric particles, optically-driven micromachines will almost always be more geometrically complex. Fortunately, such micromachines will typically possess a high degree of symmetry, typically discrete rotational symmetry. Many current designs for optically-driven micromachines are also mirror-symmetric about a plane. We show how such symmetries can be used to reduce the computational time required by orders of magnitude. Similar improvements are also possible for other highly-symmetric objects such as crystals. We demonstrate the efficacy of such methods by modelling the optical trapping of a cube, and show that even simple shapes can function as optically-driven micromachines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: Topical application of ophthalmic drugs is very inefficient; contact lenses used as drug delivery devices could minimize the drug loss and side effects. Styrene-maleic acid copolymers (PSMA) can form polymer-phospholipid complexes with dipalmitoyl phosphatidylcholine (DMPC) in the form of nanometric vesicles, which can easily solubilise hydrophobic drugs. They can be dispersed on very thin contact lens coatings to immobilize the drug on their surface. Methods: Two types of complexes stable at different pH values (5 and 7 respectively) where synthesized and loaded with drugs of different hydrophilicities during their formation process. The drug release was studied in vitro and compared to the free drug. Results: The mean sizes of the complexes obtained by light scattering were 50 nm and 450 nm respectively with low polydispersities. However, they were affected by the drugs load and release. An increase was observed in the duration of the release in the case of hydrophobic drugs, from days to weeks, avoiding initial “burst” and with a lesser amount of total drug released due to the interaction of the drug with the phospholipid core. The size and charge of the different drugs and the complexes nature also affected the release profile. Conclusions: Polymer-phospholipid complexes in the form of nanoparticles can be used to solubilise and release hydrophobic drugs in a controlled way. The drug load and release can be optimised to reach therapeutic values in the eye.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study has been made of the anionic polymerisation of methyl methacrylate using butyllithium and polystyryl lithium as initiators and the effects of lithium chloride and aluminium alkyls on the molecular weight and molecular weight distributions. Diblock copolymers of styrene-b-methyl methacrylate were synthesised at -78oC in THF in the presence of lithium chloride, and at ambient temperatures in toluene in the presence of aluminium alkyls. Studies in the presence of lithium chloride showed that the polymerisation was difficult to control; there was no conclusive evidence of a living system and the polydispersity indices were between 1.5 and 3. However, using relatively apolar solvents, in the presence of aluminium alkyls, homopolymerisation of methyl methacrylate showed characteristics of a living polymerisation. An investigation of the effects of the structures of the lithium and aluminium alkyls on the efficiency of initiation showed that a t-butyllithium/triisobutylaluminium initiating system exhibited an efficiency of 80%, compared with lower efficiencies (typically 30%) for systems based on butyllithium/triethylaluminium.The polydispersity index was found to decrease from ∼2.2 to ∼1.5 when butyllithium was replaced by t-butyllithium. The efficiency of the initiator was found to be solely dependent on the size of the alkyl group of the aluminium component, whereas the polydispersity index was found to be solely dependent on the size of the alkyl group on the lithium component. The aluminium alkyl is thought to be co-ordinated to the ester carbonyl groups of both the monomer and polymer. There is a critical degree of polymerisation, at which point the rate of polymerisation decreases, which probably relates to a change in structure of the active chain end. Characterisation of poly(styrene )-b-poly(4-vinylpyridine) and poly(styrene)-b-poly(4-vinylpyridine methyl iodide) diblock copolymers using static light scattering techniques, showed the formation of star-shaped 'reverse' micelles when placed in toluene. Temperature effects on micellization behaviour are only exhibited for the unquaternised micelles, which showed characterisically lower aggregation numbers than their quaternised counterparts. A suitable solvent was not obtained for characterisation of the styrene-b-methyl methacrylate diblock copolymers synthesized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water-based latices, used in the production of internal liners for beer/beverage cans, were investigated using a number of analytical techniques. The epoxy-graft-acrylic polymers, used to prepare the latices, and films, produced from those latices, were also examined. It was confirmed that acrylic polymer preferentially grafts onto higher molecular weight portions of the epoxy polymer. The amount of epoxy remaining ungrafted was determined to be 80%. This figure is higher than was previously thought. Molecular weight distribution studies were carried out on the epoxy and epoxy-g-acrylic resins. A quantitative method for determining copolymer composition using GPC was evaluated. The GPC method was also used to determine polymer composition as a function of molecular weight. IR spectroscopy was used to determine the total level of acrylic modification of the polymers and NMR was used to determine the level of grafting. Particle size determinations were carried out using transmission electron microscopy and dynamic light scattering. Levels of stabilising amine greatly affected the viscosity of the latex, particle size and amount of soluble polymer but the core particle size, as determined using TEM, was unaffected. NMR spectra of the latices produced spectra only from solvents and amine modifiers. Using solid-state CP/MAS/freezing techniques spectra from the epoxy component could be observed. FT-IR spectra of the latices were obtained after special subtraction of water. The only difference between the spectra of the latices and those of the dry film were due to the presence of the solvents in the former. A distinctive morphology in the films produced from the latices was observed. This suggested that the micelle structure of the latex survives the film forming process. If insufficient acrylic is present, large epoxy domains are produced which gives rise to poor film characteristics. Casting the polymers from organic solutions failed to produce similar morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humic substances are the major organic constituents of soils and sediments. They are heterogeneous, polyfunctional, polydisperse, macromolecular and have no accurately known chemical structure. Their interactions with radionuclides are particularly important since they provide leaching mechanisms from disposal sites. The central theme to this research is the interaction of heavy metal actinide analogues with humic materials. Studies described focus on selected aspects of the characteristics and properties of humic substances. Some novel approaches to experiments and data analysis are pursued. Several humic substances are studied; all but one are humic acids, and those used most extensively were obtained commercially. Some routine characterisation techniques are applied to samples in the first instance. Humic substances are coloured, but their ultra-violet and visible absorption spectra are featureless. Yet, they fluoresce over a wide range of wavelengths. Enhanced fluorescence in the presence of luminescent europium(III) ions is explained by energy transfer from irradiated humic acid to the metal ion in a photophysical model. Nuclear magnetic resonance spectroscopy is applied to the study of humic acids and their complexes with heavy metals. Proton and carbon-13 NMR provides some structural and functionality information; Paramagnetic lanthanide ions affect these spectra. Some heavy metals are studied as NMR nuclei, but measurements are restricted by their sensitivity. A humic acid is fractionated yielding a broad molecular weight distribution. Electrophoretic mobilities and particle radii determined by Laser Doppler Electrophoretic Light Scattering are sensitive to the conditions of the supporting media, and the concentration and particle size distribution of humic substances. In potentiometric titrations of humate dispersions, the organic matter responds slowly and the mineral acid addition is buffered. Proton concentration data is modelled and a mechanism is proposed involving two key stages, both resulting in proton release after some conformational changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An essential stage in endocytic coated vesicle recycling is the dissociation of clathrin from the vesicle coat by the molecular chaperone, 70-kDa heat-shock cognate protein (Hsc70), and the J-domain-containing protein, auxilin, in an ATP-dependent process. We present a detailed mechanistic analysis of clathrin disassembly catalyzed by Hsc70 and auxilin, using loss of perpendicular light scattering to monitor the process. We report that a single auxilin per clathrin triskelion is required for maximal rate of disassembly, that ATP is hydrolyzed at the same rate that disassembly occurs, and that three ATP molecules are hydrolyzed per clathrin triskelion released. Stopped-flow measurements revealed a lag phase in which the scattering intensity increased owing to association of Hsc70 with clathrin cages followed by serial rounds of ATP hydrolysis prior to triskelion removal. Global fit of stopped-flow data to several physically plausible mechanisms showed the best fit to a model in which sequential hydrolysis of three separate ATP molecules is required for the eventual release of a triskelion from the clathrin-auxilin cage.