931 resultados para Lattice-Valued Fuzzy connectives. Extensions. Retractions. E-operators
Resumo:
Z. Huang and Q. Shen. Scale and move transformation-based fuzzy interpolative reasoning: A revisit. Proceedings of the 13th International Conference on Fuzzy Systems, pages 623-628, 2004.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolation with generalized representative values. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 161-171.
Resumo:
K. Rasmani and Q. Shen. Subsethood-based fuzzy modelling and classification. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 181-188.
Resumo:
M. Galea, Q. Shen and V. Singh. Encouraging Complementary Fuzzy Rules within Iterative Rule Learning. Proceedings of the 2005 UK Workshop on Computational Intelligence, pages 15-22.
Resumo:
M. Galea and Q. Shen. Simultaneous ant colony optimisation algorithms for learning linguistic fuzzy rules. A. Abraham, C. Grosan and V. Ramos (Eds.), Swarm Intelligence in Data Mining, pages 75-99.
Resumo:
R. Jensen and Q. Shen, 'Fuzzy-Rough Feature Significance for Fuzzy Decision Trees,' in Proceedings of the 2005 UK Workshop on Computational Intelligence, pp. 89-96, 2005.
Resumo:
Q. Shen and R. Jensen, 'Approximation-based feature selection and application for algae population estimation,' Applied Intelligence, vol. 28, no. 2, pp. 167-181, 2008. Sponsorship: EPSRC RONO: EP/E058388/1
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolative and extrapolative reasoning: a practical approach. IEEE Transactions on Fuzzy Systems, 16(1):13-28, 2008.
Resumo:
Computational Intelligence and Feature Selection provides a high level audience with both the background and fundamental ideas behind feature selection with an emphasis on those techniques based on rough and fuzzy sets, including their hybridizations. It introduces set theory, fuzzy set theory, rough set theory, and fuzzy-rough set theory, and illustrates the power and efficacy of the feature selections described through the use of real-world applications and worked examples. Program files implementing major algorithms covered, together with the necessary instructions and datasets, are available on the Web.
Resumo:
Shen, Q., Zhao, R., Tang, W. (2008). Modelling random fuzzy renewal reward processes. IEEE Transactions on Fuzzy Systems, 16 (5),1379-1385
Resumo:
Alexander, N.; and Colgate, N. (2005). Customers' responses to retail brand extensions. Journal of Marketing Management. 21(3-4), pp.393-419 RAE2008
Resumo:
Wood, Ian; Hieber, M., (2007) 'The Dirichlet problem in convex bounded domains for operators with L8-coefficients', Differential and Integral Equations 20 pp.721-734 RAE2008
Resumo:
Iantchenko, A.; Sj?strand, J., (2001) 'Birkhoff normal forms for Fourier integral operators II', American Journal of Mathematics 124(4) pp.817-850 RAE2008
Resumo:
Gohm, Rolf; Skeide, M., (2005) 'Constructing extensions of CP-maps via tensor dilations with rhe help of von Neumann modules', Infinite Dimensional Analysis, Quantum Probability and Related Topics 8(2) pp.291-305 RAE2008
Resumo:
In the analysis of relations among the elements of two sets it is usual to obtain different values depending on the point of view from which these relations are measured. The main goal of the paper is the modelization of these situations by means of a generalization of the L-fuzzy concept analysis called L-fuzzy bicontext. We study the L-fuzzy concepts of these L-fuzzy bicontexts obtaining some interesting results. Specifically, we will be able to classify the biconcepts of the L-fuzzy bicontext. Finally, a practical case is developed using this new tool.