991 resultados para Land problems
Resumo:
The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.
Resumo:
Over the past two decades, soil ecotoxicologists have made strides in utilizing the basic concepts and advancements in soil zoology and ecology. They have applied the existing tools, and developed new ones to investigate how chemical contamination can affect soil ecosystems, including the degradation or destruction of soil quality and habitats or the diminishment of belowground biodiversity. Soil ecotoxicologists are applying a suite of standard protocols, originally developed as laboratory tests with single chemicals (e.g., pesticides), and further enhancing both the approaches and protocols for the assessment of contaminated lands. However, ecological relevance of some approaches remains unresolved. The authors discuss the main challenges for a coherent ecotoxicological assessment of soil ecosystems amid contaminated lands, and provide recommendations on how to integrate the effects of physical and chemical soil properties, the variations in the diversity of soil invertebrates, and the interactions among organisms of various trophic levels. The review examines new international approaches and test methods using examples from three continents (in particular research conducted in Brazil), and provides recommendations for improving ecological relevance of ecotoxicological investigations of contaminated lands.
Resumo:
On Chichijima, one of the Ogasawara (Bonin) Islands located in the Western Pacific Ocean, land snails have declined, the suggested cause being predation pressure by an invasive flatworm (Platydemus manokwari). Soil fauna were investigated in areas where the snail survives, and where it has become extinct. Much of the fauna, dominated by introduced earthworms and ants, was undiminished, however, one undescribed but endemic carabid (Badister sp.), which selectively feeds on land snails, was absent in snail-extinct areas. The invasive flatworm P. manokwari has been reported to feed also on the carcasses of earthworms, as well as on live snails, and is therefore expected to occur in most parts of Chichijima Island. Among other groups, the density of isopods (also dominated by exotic species) was very low, in comparison with the reported ones 30 years ago. Community structure is currently reflected by dominance of earthworms and ants, decline of endemic isopods, and a high frequency of introduced or alien species.
Resumo:
According to Iowa crash records, almost 10% of all crashes in Iowa occur at commercial driveways. Most of these crashes occur on arterials within municipalities. In recent years, nearly a quarter of these crashes have occurred in the Des Moines metropolitan area. This makes the Des Moines metropolitan area a prime candidate for improved access management. Case study research in Iowa has shown that access management is an extremely effective highway safety tool—well-managed routes are, on average, 40% safer than poorly managed routes. The Des Moines metropolitan area has many miles of four-lane, undivided arterials constructed when less was known about the importance of managing access to adjacent land development. This project involved a cooperative effort of the Des Moines Area Metropolitan Planning Organization (Des Moines Area MPO) and the Center for Transportation Research and Education (CTRE) at Iowa State University to develop a comprehensive access management study and program for the Des Moines metropolitan area. The goal of the study is to use the knowledge developed to make improvements that will reduce access-related crashes. It is also anticipated that this project will help local officials make better decisions about access management so that future safety and operational problems can be avoided.
Resumo:
Williamson Pond is a 26-acre publicly owned lake located about 2 miles east of the town of Williamson, in Lucas County. It has a watershed area of 1,499 acres. It has been managed since 1976 by the Lucas County Conservation Board (while still under state ownership) for fishing, boating, hunting, picnicking and other passive uses. Designated uses are Class AI, primary contact, and Class B (LW) aquatic life. Williamson Pond is on the 2004 EPA 303(d) List of Impaired Waters. A Total Maximum Daily Load (TMDL) for turbidity and nutrients at Williamson Pond was prepared by IDNR in 2005 and approved by EPA in 2006. The TMDL set reduction targets for both suspended sediment and phosphorus. The Williamson Pond Watershed Management Plan has provided the local work group and partners with information to develop and implement strategies to improve and protect water quality. These strategies are based on a three phase approach that will ultimately lead the removal of Williamson Pond from the Impaired Waters List. The goals identified in this proposal (Phase I) will reduce sediment and phosphorus delivery by 453 tons and 589 pounds annually. The Lucas County SWCD has and will continue to provide leadership on the Williamson Pond Project and has secured the partnerships necessary to address water quality problems and hired a part-time project coordinator to manage, implement, and oversee all activities pertaining to this proposal.
Resumo:
Silver Lake is located in an 18,053-acre watershed. The watershed is intensively farmed with almost all of the wetlands being previously drained or degraded over the last 50 years. Silver Lake is listed on the State of Iowa’s impaired water bodies list due to sediment and high nutrient level. Silver Lake is also known be in the bottom 25 percentile of Iowa’s lakes due Secchi disk readings and Chlorophyll a level. Farming in the watershed is the principle concern and cause for many of the problems occurring in Silver Lake currently with 78% of the watershed being intensively farmed. There are two major drainage ditches that have been used to drain the major wetlands and sloughs that, at one time, filtered the water and slowed it down before it reached Silver Lake. With these two major drainage ditches, water is able to reach the lake much faster and unfiltered than it once did historically. The loss of 255 restorable wetland basins to row crop production has caused serious problems in Silver Lake. These wetland basins once slowed and filtered water as it moved through the watershed. With their loss over the last 50 years that traditional drainage no longer occurs. We propose to create a Wetland Reserve Program incentive project to make WRP a more attractive option to landowners within the watershed. The incentive will be based on the amount of sediment delivery reduction to the lake, therefore paying a greater payment for a greater benefit to the lake. The expected result of this project is the restoration of over 250 acres of wetland basins with an associated 650 acres of upland buffers. The benefit for these wetlands and buffers would be reduced sediment, reduced nutrients, and slowed waters to the lake.
Resumo:
Miller Creek is on the 2006 Section 303d Impaired Waters List and has a 19,926 acre watershed. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to sediment and nutrient delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. In an effort to control these problems, the Miller Creek Water Quality Project will target areas of 5 tons per acre or greater soil loss or with 0.5 tons per acre or greater sediment delivery rates. The assessment revealed these targeted priority lands make up 32% or 6,395 acres of the Miller Creek watershed. Priority lands include cropland, pasture land, timber, and sensitive riparian areas. It is the goal of this project to reduce sediment delivery by 70% on 60% or 3,837 acres of these priority lands. This will be accomplished through installation of strategically placed structural practices, rotational grazing systems, and buffer strips. These practices will reduce soil loss, reduce sediment delivery, improve water quality, and improve wildlife habitat in the watershed. Utilizing partnerships with NRCS and IDALS-DSC will be important in making this project successful. In addition to using matching funds from EQIP, WHIP, and CRP, the Monroe SWCD is committed to prioritizing local cost share funds through IFIP and REAP for use in the Miller Creek Watershed.
Resumo:
Abstract: The expansion of a recovering population - whether re-introduced or spontaneously returning - is shaped by (i) biological (intrinsic) factors such as the land tenure system or dispersal, (ii) the distribution and availability of resources (e.g. prey), (iii) habitat and landscape features, and (iv) human attitudes and activities. In order to develop efficient conservation and recovery strategies, we need to understand all these factors and to predict the potential distribution and explore ways to reach it. An increased number of lynx in the north-western Swiss Alps in the nineties lead to a new controversy about the return of this cat. When the large carnivores were given legal protection in many European countries, most organizations and individuals promoting their protection did not foresee the consequences. Management plans describing how to handle conflicts with large predators are needed to find a balance between "overabundance" and extinction. Wildlife and conservation biologists need to evaluate the various threats confronting populations so that adequate management decisions can be taken. I developed a GIS probability model for the lynx, based on habitat information and radio-telemetry data from the Swiss Jura Mountains, in order to predict the potential distribution of the lynx in this mountain range, which is presently only partly occupied by lynx. Three of the 18 variables tested for each square kilometre describing land use, vegetation, and topography, qualified to predict the probability of lynx presence. The resulting map was evaluated with data from dispersing subadult lynx. Young lynx that were not able to establish home ranges in what was identified as good lynx habitat did not survive their first year of independence, whereas the only one that died in good lynx habitat was illegally killed. Radio-telemetry fixes are often used as input data to calibrate habitat models. Radio-telemetry is the only way to gather accurate and unbiased data on habitat use of elusive larger terrestrial mammals. However, it is time consuming and expensive, and can therefore only be applied in limited areas. Habitat models extrapolated over large areas can in turn be problematic, as habitat characteristics and availability may change from one area to the other. I analysed the predictive power of Ecological Niche Factor Analysis (ENFA) in Switzerland with the lynx as focal species. According to my results, the optimal sampling strategy to predict species distribution in an Alpine area lacking available data would be to pool presence cells from contrasted regions (Jura Mountains, Alps), whereas in regions with a low ecological variance (Jura Mountains), only local presence cells should be used for the calibration of the model. Dispersal influences the dynamics and persistence of populations, the distribution and abundance of species, and gives the communities and ecosystems their characteristic texture in space and time. Between 1988 and 2001, the spatio-temporal behaviour of subadult Eurasian lynx in two re-introduced populations in Switzerland was studied, based on 39 juvenile lynx of which 24 were radio-tagged to understand the factors influencing dispersal. Subadults become independent from their mothers at the age of 8-11 months. No sex bias neither in the dispersal rate nor in the distance moved was detected. Lynx are conservative dispersers, compared to bear and wolf, and settled within or close to known lynx occurrences. Dispersal distances reached in the high lynx density population - shorter than those reported in other Eurasian lynx studies - are limited by habitat restriction hindering connections with neighbouring metapopulations. I postulated that high lynx density would lead to an expansion of the population and validated my predictions with data from the north-western Swiss Alps where about 1995 a strong increase in lynx abundance took place. The general hypothesis that high population density will foster the expansion of the population was not confirmed. This has consequences for the re-introduction and recovery of carnivores in a fragmented landscape. To establish a strong source population in one place might not be an optimal strategy. Rather, population nuclei should be founded in several neighbouring patches. Exchange between established neighbouring subpopulations will later on take place, as adult lynx show a higher propensity to cross barriers than subadults. To estimate the potential population size of the lynx in the Jura Mountains and to assess possible corridors between this population and adjacent areas, I adapted a habitat probability model for lynx distribution in the Jura Mountains with new environmental data and extrapolated it over the entire mountain range. The model predicts a breeding population ranging from 74-101 individuals and from 51-79 individuals when continuous habitat patches < 50 km2 are disregarded. The Jura Mountains could once be part of a metapopulation, as potential corridors exist to the adjoining areas (Alps, Vosges Mountains, and Black Forest). Monitoring of the population size, spatial expansion, and the genetic surveillance in the Jura Mountains must be continued, as the status of the population is still critical. ENFA was used to predict the potential distribution of lynx in the Alps. The resulting model divided the Alps into 37 suitable habitat patches ranging from 50 to 18,711 km2, covering a total area of about 93,600 km2. When using the range of lynx densities found in field studies in Switzerland, the Alps could host a population of 961 to 1,827 residents. The results of the cost-distance analysis revealed that all patches were within the reach of dispersing lynx, as the connection costs were in the range of dispersal cost of radio-tagged subadult lynx moving through unfavorable habitat. Thus, the whole Alps could once be considered as a metapopulation. But experience suggests that only few disperser will cross unsuitable areas and barriers. This low migration rate may seldom allow the spontaneous foundation of new populations in unsettled areas. As an alternative to natural dispersal, artificial transfer of individuals across the barriers should be considered. Wildlife biologists can play a crucial role in developing adaptive management experiments to help managers learning by trial. The case of the lynx in Switzerland is a good example of a fruitful cooperation between wildlife biologists, managers, decision makers and politician in an adaptive management process. This cooperation resulted in a Lynx Management Plan which was implemented in 2000 and updated in 2004 to give the cantons directives on how to handle lynx-related problems. This plan was put into practice e.g. in regard to translocation of lynx into unsettled areas. Résumé: L'expansion d'une population en phase de recolonisation, qu'elle soit issue de réintroductions ou d'un retour naturel dépend 1) de facteurs biologiques tels que le système social et le mode de dispersion, 2) de la distribution et la disponibilité des ressources (proies), 3) de l'habitat et des éléments du paysage, 4) de l'acceptation de l'espèce par la population locale et des activités humaines. Afin de pouvoir développer des stratégies efficaces de conservation et de favoriser la recolonisation, chacun de ces facteurs doit être pris en compte. En plus, la distribution potentielle de l'espèce doit pouvoir être déterminée et enfin, toutes les possibilités pour atteindre les objectifs, examinées. La phase de haute densité que la population de lynx a connue dans les années nonante dans le nord-ouest des Alpes suisses a donné lieu à une controverse assez vive. La protection du lynx dans de nombreux pays européens, promue par différentes organisations, a entraîné des conséquences inattendues; ces dernières montrent que tout plan de gestion doit impérativement indiquer des pistes quant à la manière de gérer les conflits, tout en trouvant un équilibre entre l'extinction et la surabondance de l'espèce. Les biologistes de la conservation et de la faune sauvage doivent pour cela évaluer les différents risques encourus par les populations de lynx, afin de pouvoir rapidement prendre les meilleuresmdécisions de gestion. Un modèle d'habitat pour le lynx, basé sur des caractéristiques de l'habitat et des données radio télémétriques collectées dans la chaîne du Jura, a été élaboré afin de prédire la distribution potentielle dans cette région, qui n'est que partiellement occupée par l'espèce. Trois des 18 variables testées, décrivant pour chaque kilomètre carré l'utilisation du sol, la végétation ainsi que la topographie, ont été retenues pour déterminer la probabilité de présence du lynx. La carte qui en résulte a été comparée aux données télémétriques de lynx subadultes en phase de dispersion. Les jeunes qui n'ont pas pu établir leur domaine vital dans l'habitat favorable prédit par le modèle n'ont pas survécu leur première année d'indépendance alors que le seul individu qui est mort dans l'habitat favorable a été braconné. Les données radio-télémétriques sont souvent utilisées pour l'étalonnage de modèles d'habitat. C'est un des seuls moyens à disposition qui permette de récolter des données non biaisées et précises sur l'occupation de l'habitat par des mammifères terrestres aux moeurs discrètes. Mais ces méthodes de- mandent un important investissement en moyens financiers et en temps et peuvent, de ce fait, n'être appliquées qu'à des zones limitées. Les modèles d'habitat sont ainsi souvent extrapolés à de grandes surfaces malgré le risque d'imprécision, qui résulte des variations des caractéristiques et de la disponibilité de l'habitat d'une zone à l'autre. Le pouvoir de prédiction de l'Analyse Ecologique de la Niche (AEN) dans les zones où les données de présence n'ont pas été prises en compte dans le calibrage du modèle a été analysée dans le cas du lynx en Suisse. D'après les résultats obtenus, la meilleure mé- thode pour prédire la distribution du lynx dans une zone alpine dépourvue d'indices de présence est de combiner des données provenant de régions contrastées (Alpes, Jura). Par contre, seules les données sur la présence locale de l'espèce doivent être utilisées pour les zones présentant une faible variance écologique tel que le Jura. La dispersion influence la dynamique et la stabilité des populations, la distribution et l'abondance des espèces et détermine les caractéristiques spatiales et temporelles des communautés vivantes et des écosystèmes. Entre 1988 et 2001, le comportement spatio-temporel de lynx eurasiens subadultes de deux populations réintroduites en Suisse a été étudié, basé sur le suivi de 39 individus juvéniles dont 24 étaient munis d'un collier émetteur, afin de déterminer les facteurs qui influencent la dispersion. Les subadultes se sont séparés de leur mère à l'âge de 8 à 11 mois. Le sexe n'a pas eu d'influence sur le nombre d'individus ayant dispersés et la distance parcourue au cours de la dispersion. Comparé à l'ours et au loup, le lynx reste très modéré dans ses mouvements de dispersion. Tous les individus ayant dispersés se sont établis à proximité ou dans des zones déjà occupées par des lynx. Les distances parcourues lors de la dispersion ont été plus courtes pour la population en phase de haute densité que celles relevées par les autres études de dispersion du lynx eurasien. Les zones d'habitat peu favorables et les barrières qui interrompent la connectivité entre les populations sont les principales entraves aux déplacements, lors de la dispersion. Dans un premier temps, nous avons fait l'hypothèse que les phases de haute densité favorisaient l'expansion des populations. Mais cette hypothèse a été infirmée par les résultats issus du suivi des lynx réalisé dans le nord-ouest des Alpes, où la population connaissait une phase de haute densité depuis 1995. Ce constat est important pour la conservation d'une population de carnivores dans un habitat fragmenté. Ainsi, instaurer une forte population source à un seul endroit n'est pas forcément la stratégie la plus judicieuse. Il est préférable d'établir des noyaux de populations dans des régions voisines où l'habitat est favorable. Des échanges entre des populations avoisinantes pourront avoir lieu par la suite car les lynx adultes sont plus enclins à franchir les barrières qui entravent leurs déplacements que les individus subadultes. Afin d'estimer la taille de la population de lynx dans le Jura et de déterminer les corridors potentiels entre cette région et les zones avoisinantes, un modèle d'habitat a été utilisé, basé sur un nouveau jeu de variables environnementales et extrapolé à l'ensemble du Jura. Le modèle prédit une population reproductrice de 74 à 101 individus et de 51 à 79 individus lorsque les surfaces d'habitat d'un seul tenant de moins de 50 km2 sont soustraites. Comme des corridors potentiels existent effectivement entre le Jura et les régions avoisinantes (Alpes, Vosges, et Forêt Noire), le Jura pourrait faire partie à l'avenir d'une métapopulation, lorsque les zones avoisinantes seront colonisées par l'espèce. La surveillance de la taille de la population, de son expansion spatiale et de sa structure génétique doit être maintenue car le statut de cette population est encore critique. L'AEN a également été utilisée pour prédire l'habitat favorable du lynx dans les Alpes. Le modèle qui en résulte divise les Alpes en 37 sous-unités d'habitat favorable dont la surface varie de 50 à 18'711 km2, pour une superficie totale de 93'600 km2. En utilisant le spectre des densités observées dans les études radio-télémétriques effectuées en Suisse, les Alpes pourraient accueillir une population de lynx résidents variant de 961 à 1'827 individus. Les résultats des analyses de connectivité montrent que les sous-unités d'habitat favorable se situent à des distances telles que le coût de la dispersion pour l'espèce est admissible. L'ensemble des Alpes pourrait donc un jour former une métapopulation. Mais l'expérience montre que très peu d'individus traverseront des habitats peu favorables et des barrières au cours de leur dispersion. Ce faible taux de migration rendra difficile toute nouvelle implantation de populations dans des zones inoccupées. Une solution alternative existe cependant : transférer artificiellement des individus d'une zone à l'autre. Les biologistes spécialistes de la faune sauvage peuvent jouer un rôle important et complémentaire pour les gestionnaires de la faune, en les aidant à mener des expériences de gestion par essai. Le cas du lynx en Suisse est un bel exemple d'une collaboration fructueuse entre biologistes de la faune sauvage, gestionnaires, organes décisionnaires et politiciens. Cette coopération a permis l'élaboration du Concept Lynx Suisse qui est entré en vigueur en 2000 et remis à jour en 2004. Ce plan donne des directives aux cantons pour appréhender la problématique du lynx. Il y a déjà eu des applications concrètes sur le terrain, notamment par des translocations d'individus dans des zones encore inoccupées.
Resumo:
This literature review serves as a foundation for a transportation and land use public policy education program for Iowa. The objective of the review is to summarize relevant research findings, to review the state of practice and policies of other state and local governments, and to explore land use trends both within the state of Iowa and the nation as a whole. Much of what we learned has been incorporated into the course materials. Because we expect to identify more useful sources throughout the project, this literature review should be considered a work in progress.
Resumo:
The Yellow River Headwaters Watershed (YRHW) drains 26,730 acres of rural land within Winneshiek and Allamakee Counties. While portions of the river have been designated as a High Quality Resource by the State of Iowa, other portions appear on the State's 303(d) List of Impaired Waters due to excessive nutrients, sediment and other water quality issues. The Winneshiek SWCD was fortunate enough to secure WSPF/WPF funds for FY2009 to begin addressing many of the sources of the identified problems, especially along the all-to-critical stream corridor. Initial landowner I producer interest has exceeded expectations and several key BMPs have been installed within the identified critical areas. Yet due to the current budget constraints in the WSPF/WPF programs, we currently have greater landowner I producer interest than we do funds, which is why the District is applying for WIRB funding, to provide supplemental incentives to continue the installation of needed Grade Stabilization Structures, Terraces and Manure Management Systems in identified critical areas. Other funding, currently available to the District, will cover the remaining portions of the project's budget, including staff and our outreach efforts.
Resumo:
Phase 2 of the Saylor Creek Improvement Project is focused on channel restoration. The existing stream channel is generally incised, running through areas primarily covered with heavy trees, brush and weeds. The ravine ranges from 6 to 20 feet deep through the corridor with very steep slopes in several areas. In two areas storm outlets are undercut or suspended above the channel. Tall undercut, eroded banks exist along several of the outside bends. Sediment deposition on the inside bends limits the cross-section of the channel, increasing flow velocity and forcing this faster flow toward the eroded outside bank. A wide array of practices will need to be implemented to address channel erosion. Improvements will be specifically tailored to address problems observed at each bend. The result will be a channel with a more natural appearance, and reduced use of hard armor and revetment. Some sections will require minimal grading with removal of underbrush for improved maintenance access and more sun exposure, better allowing deep rooted plants and flowers to establish to provide further erosion protection. Straight sections with steep banks will require grading to pull back slopes, increasing the creek's capacity to convey storm flows at slower velocities. Sections with sharp bends will require slope pull back and armor protection. A constructed wetland will collect and treat runoff from a small sub-watershed, before being discharged into the main tributary.
Resumo:
Price Creek is a 13 mile long stream located in SE Benton County and the NE corner of Iowa County. It ends below the village of Amana where it flows into the Iowa River. The Iowa and Benton County Soil & Water Conservation Districts (SWCDs) applied (and were tentatively approved) for 319/WPF/WSPF funding to treat livestock and water quality issues in this watershed over the next three years. That project’s funds were allocated for a Project Coordinator, information and education activities, and cost share for Best Management Practices (BMPs) directed toward livestock issues and nutrient issues. Soil erosion and sedimentation are also problems in this 18,838 acre watershed. It is 64% HEL (highly erodible land) and 58% of it is cropped. With a coordinator working with Price Creek producers, this would be an excellent time to also address the soil loss and sedimentation issues in this watershed. We will offer additional cost share incentives on BMPs targeting soil erosion on the critical areas we’ve identified. We are applying to IWIRB for additional funding to allow us to cost share specific BMPs up to 75% to treat soil loss in these critical areas of the Price Creek Watershed.
Resumo:
Two sections of the Yellow River have been named to the State of Iowa’s 303d list of impaired waters. The listing reflects streams with pollution problems linked to habitat alterations, in addition to those with potential disease causing bacteria, viruses and parasites. This fact, combined with local knowledge of water quality problems, shows the need for land treatment practices and habitat improvement measures. This project would target the Yellow River watershed, which totals approximately 49,800 acres. Areas that drain directly into the Yellow River mainstream will be targeted. Individually, these areas are too small to be considered sub-watersheds. This project will assess the drainage areas for active gullies and prioritize grade stabilization structures based upon severity and impact on the fishery. Funding would be utilized to target high priority grade stabilization structure sites and provide cost-share for those projects. A prerequisite for cost-share allocation is 75% of the land contributing to the drainage area must have some form of treatment in place. The Allamakee SWCD has received an EPA Region 7 Grant toward grade stabilization structures in the same area. Landowners have indicated that 75% cost-share is necessary to implement practices. To meet this request, the EPA funding would be used at a 15% cost-share rate if matched with 60% cost-share from WIRB funding. If matched with Federal EQIP funds, 25% of funds obtained from WIRB would be used. If other funds were depleted, WIRB funds would be utilized for the entire 75% cost-share.
Resumo:
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.