727 resultados para Lactobacillus salivarius
Resumo:
L’obiettivo della mia tesi è stato quello di valutare gli effetti delle alte pressioni di omogeneizzazione sulla vitalità, idrofobicità, modulazione degli acidi grassi di membrana e la risposta genica, legata soprattutto alla biosintesi di acidi grassi, di Lactobacillus paracasei A13 quando sottoposto a trattamenti ad alta pressione di omogeneizzazione compresi tra 50 e 200 MPa. I dati di carico cellulare, registrati anche dopo trattamento a 200 MPa, hanno dimostrato che Lb. paracasei A13 è fortemente baro tollerante. Inoltre, il trattamento iperbarico induce un incremento di idrofobicità del ceppo, soprattutto quando trattato a 150 MPa, influenzando potenzialmente in modo positivo l’interazione tra il microrganismo oggetto di studio e l’intestino dell’ospite. I dati riguardanti gli acidi grassi hanno dimostrato che la membrana cellulare, ritenuta uno dei bersagli più suscettibili alla pressione, è in grado di rispondere agli stress sub letali provocati dal trattamento iperbarico. In particolare, all’aumentare della pressione, aumenta il grado d’insaturazione della membrana, accompagnato anche da un incremento degli acidi grassi ciclici, da una riduzione della catena carboniosa degli acidi grassi C12, 13, 14 e da una diminuzione degli idrossiacidi, giustificata con la ben nota capacità di molti batteri lattici di trasformarli, in condizioni di stress, in molecole quorum sensing quali ad esempio i furanoni. I dati relativi allo studio di specifici geni, indicano chiaramente una iperespressione dei geni fabH e fabD, responsabili delle prime fasi di biosintesi degli acidi grassi. Pertanto, la loro significativa iperespressione a 150 e 200 MPa rende ragione del significativo incremento di acidi grassi a corta catena registrato in tali condizioni. Anche il significativo aumento degli acidi grassi insaturi può essere spiegato attraverso l’incremento di espressione di fabF e fabZ responsabili dell’introduzione di doppi legami nella catena carboniosa.
Resumo:
This thesis reports five studies that may contribute to understand how weaning affects the immune and intestinal microbiota maturation of the piglet and proposes some possible nutritional strategies to attenuate its negative effects. The first study showed that weaning is associated in Payer’s patches with the activation of MHC response against class I antigens and that related to the stimulation to IFN-γ and showed, for the first time, that their blood at weaning remains dominated by immature blood cells. In the second study we tested if the use of a live vaccine against a conditionally but also genetically based intestinal disease, like PWD, could have an impact on the growth performance of pigs and their intestinal microbiota and if it could provide a model to test the response to nutritional strategies under conditions of an immune and intestinal stimulation for animals susceptible to ETEC type. In this study, we demonstrated how a vaccinal strain of F4/F18 E. coli can affect the gut microbial composition of piglets, regardless of their genetic susceptibility to ETEC infection. In the third study we evidenced how a nucleotide supplementation can favor the proliferation of jejunal Peyer patches and anticipate the maturation of the fecal microbiota. In the fourth study we reported how xylanase can favor the proliferation of Lactobacillus reuteri. Finally, we showed some first results on the muscles fiber development in fast- and slow-growing suckling pigs and the relationship with the intestinal microbiota. Taken together, the results presented in this thesis provide new insight about the interplay between the host-genetics, gut microbial composition, and host physiological status. Furthermore, it provides confirmation that the use of known genetic markers for ETEC F4 and F18 could represent a potential tool to stratify the animals in the trials both in healthy or challenge-based protocols.
Resumo:
Background and Aims: Intestinal dysbiosis has been described in children with chronic intestinal failure (CIF) and in adults with short bowel syndrome (SBS), mostly with jejunocolic anastomosis (SBS-2) and jejuno-ileal anastomosis (SBS-3), linked to generic data with the pathogenesis of Intestinal Failure Associated Liver Disease (IFALD). Little is known about gut microbiome of adults with end-jejunostomy (SBS-1) and in CIF other than SBS and any specific associations with the onset of IFALD. We aimed to describe the fecal microbiome of adult patients with different mechanisms of CIF and any possible associations with the development of IFALD. Material and methods: Fecal samples from 61 patients with benign CIF. Phylogenetic characterization of the microbiome by amplification of the hypervariable regions V3 and V4 of the bacterial gene encoding 16S rRNA, and subsequent grouping of sequences in amplicon sequence variants (ASVs). Patient samples comparison to microbiome sequences from 61 healthy subjects, matched for sex and age, selected from the healthy subjects library of the Laboratory of the Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, of the University of Bologna. IFALD was assessed by the diagnostic criteria of IFALD-cholestasis, IFALD-steatosis, IFALD-fibrosis. Results: Decreased bacterial α-diversity in CIF patients (increase of Proteobacteria and Actinobacteria and decrease in Bacteroidetes). Identification of microbial family-level signatures specific for CIF mechanisms (increase in Actinomycetaceae and Streptococcaceae in SBS-1, Bifidobacteriaceae and Lactobacillaceae in SBS-2, Bacteroidaceae and Porphyromonadaceae in dysmotility). Abundance of Lactobacillus and Lactobacillaceae strongly associated with IFALD-cholestasis and IFALD–fibrosis for SBS-1; Peptostreptococcus, Prevotellaceae (Prevotella) and Pasteurellaceae (Haemophilus) significantly increased in IFALD-fibrosis for other CIF mechanisms. Conclusions: CIF patients had a marked intestinal dysbiosis with microbial family-level signatures specific to the pathophysiological mechanism. Specific characteristics of microbiome may contribute to the pathogenesis of IFALD. Intestinal microbiome could become a therapeutic target in patients with CIF.
Resumo:
My PhD project was intended, throughout the selection of probiotics from human milk and healthy vaginal environment, for the development of tailored fermented foods. According to this aim, several activities were carried out. The first one, concerning the isolation of Lactobacillus and Bifidobacterium strains from human milk to find new probiotic candidates to be included in food products showed promising results. Probiotics have been also proposed to improve female genital health and microbial strains isolated and connected with healthy vaginal ecosystem could be used to prevent or treat vaginal dysbiosis. In this context vaginal lactobacilli previously characterized for their technological features and antagonistic activity against several female uro-genital pathogens were investigated for their metabolic aptitude and additional probiotic features, showing interesting results hypothesizing their inclusion in foods. In addition, in order to preserve vaginal strains viability during food processing/digestion it was also evaluated the potential of microencapsulation by spray-drying. In this framework the results obtained were highly promising from the perspective of using encapsulated powders in food formulations. Another activity connected with the main idea to develop a food strategy for the administration of these vaginal strains was carried out. Lactobacillus crispatus BC4, was supplemented in a Squacquerone cheese, and its digestive fate was evaluated adopting SHIME® system. The results showed that during colonic fermentation, L. crispatus BC4 was metabolically active. Additionally, although probiotic delivery to humans has traditionally been associated with fermented dairy foods, recently the demand for non-dairy-alternatives as potential probiotics carrier is increasing. In this framework, my latest activity was connected with the development of fermented soy milks with encapsulated and non-encapsulated L. crispatus BC4 and L. gasseri BC9. The same fermented soy milks were also investigated for their nutritional qualities and after in vitro digestion for their specific functionality on post-menopausal fecal microbiota and protein bioaccessibility.
Resumo:
The thesis investigates two different in vitro aspects of Chlamydia trachomatis (CT). The thesis analyzes the effect of different sugars on CT infectivity. which is investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose or mannitol. Sugars effect on EB membrane fluidity is investigated by fluorescence anisotropy measurement, whereas changes in lipopolysaccharide exposure are examined by cytofluorimetric analysis. By Western blot experiments, the phosphorylation state of Focal Adhesion Kinase in cells infected with EBs pre-incubated with sugars it’s explored. Sugar significantly increase infectivity, acting on the EB structure. Sugars induce an increase of EB membrane fluidity, leading to changes in LPS exposure. After incubation with sucrose and mannitol, EBs lead to higher FAK phosphorylation, enhancing activation of anti-apoptotic and proliferative signals in the host. Secondly, the thesis explores the protective effect of different Lactobacilli against CT infection: Lactobacillus crispatus and Lactobacillus reuteri. CT infectivity is evaluated after host cells were treated for 1 hour with diluted supernatant cell-free fraction or with the bacterial cells. Assessed that L.crispatus is more protective than L.reuteri, lactic acid production is evaluated by HPLC. Subsequently Lactate dehydrogenases activity is evaluated by resazurin assay and by LC-MS. Then, D-lactate dehydrogenase specific activity has been investigated by measuring NADH formation. Afterwards, addition of D or L-lactic acid to L.reuteri supernatant has been performed and their effect in promoting protection in the host cells assessed. Then a metabolic analysis has been carried out by real-time measurement of mitochondrial respiration after treatment. Finally, histone acetylation and lactylation, and gene and protein expression of relevant targets, have been investigated. It is shown that the D isomer is more efficient in conferring protection, causing a shift in the host cell metabolic profile and a pattern of histone modifications that changes the expression of important targets.
Resumo:
Nonhuman primates (NHPs) are important animal models for the study of human health and disease. In particular, the use of NHPs to study the vaginal microbiome and susceptibility to infections (such as HIV and herpesvirus) is exceptionally valuable due to the similarity in anatomy and physiology. An important aspect to this is maintaining a healthy vaginal microbiome which then minimizes colonization by pathogens and resulting inflammation along the mucosa. In women, conditions such as bacterial vaginosis (BV) are frequently treated with antibiotics such as metronidazole or clindamycin. Due to the excessive use of antimicrobials in medicine and agriculture, alternative compounds and therapies are highly desired to treat infections. Approaches that have been developed and used for vaginal infections includes the use of natural antimicrobials such as essential oils, probiotics, and live cultures, which mimic and function like antibiotics but lack development of resistance like classic antibiotics. However, these approaches have been minimally studied in humans and animals. Effectiveness of essential oils are anecdotal at best. Microbiome manipulation on the other hand has been investigated more thoroughly. Novel products are being distributed for medical use and are monotherapies containing Lactobacillus which colonize the vaginal mucosa (Ali et al., 2020; Brichacek et al., 2013; Lagenaur, Sanders-Beer, et al., 2011). Unfortunately, these therapies have limitations due to durability and individual response in women. By evaluating the extent by which the NHP vaginal mucosa can be colonized with exogenously delivered bacteria, this animal model will highlight the NHP for use in translational studies which use essential oils and beneficial microbiome bacteria for vaginal delivery.
Resumo:
The present thesis aims to provide a thorough comprehension of the vaginal ecosystem of pregnant women and enhance the knowledge of pregnancy pathophysiology. The first study emphasized the importance of limiting protein intake from animal sources, consuming carbohydrates, and avoiding starting pregnancy overweight to maintain a healthy vaginal environment characterized by lactobacilli and related metabolites. In the second paper, a reduction in bacterial diversity, an increase in Lactobacillus abundance, and a decrease in bacterial vaginosis-related genera were observed during pregnancy. Lactobacillus abundance correlated with higher levels of lactate, sarcosine, and amino acids, while bacterial vaginosis-related genera were associated with amines, formate, acetate, alcohols, and short-chain fatty acids. An association between intrapartum antibiotic prophylaxis for Group B Streptococcus and higher vaginal abundance of Prevotella was found. Moreover, women experiencing a first-trimester miscarriage displayed a higher abundance of Fusobacterium. The third study explored the presence of macrolides and tetracyclines resistance genes in the vaginal environment, highlighting that different vaginal microbiota types were associated with distinct resistance profiles. Lactobacilli-dominated ecosystems showed fewer or no resistance genes, while women with increased bacterial vaginosis-related genera were positive for resistance genes. The last two papers aimed to identify potential biomarkers of vaginal health or disease status. The fourth paper showed that positivity for Torquetenovirus decreased from the first to the third trimester, being more prevalent in women with higher vaginal leukocyte counts. Torquetenovirus-positive samples showed higher levels of cytokines, propionate, and cadaverine. Lactobacillus species decreased in Torquetenovirus-positive samples, while Sneathia and Shuttleworthia increased. The last work pointed out the association between clade 2 of Gardnerella vaginalis and bacterial vaginosis. Moreover, as the number of simultaneously detected G. vaginalis clades increased, bacterial vaginosis-associated bacteria also tended to increase. Additionally, sialidase gene levels negatively correlated with Lactobacillus and positively correlated with Gardnerella, Atopobium, Prevotella, Megasphaera, and Sneathia.