962 resultados para LINKED POLY(EPSILON-CAPROLACTONE)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 degrees C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pair of first and second generation poly(alkyl ether imine) dendrimers is prepared, having covalently attached cholesteryl moieties at their peripheries. The pairs in each generation differ in the alkyl-linker which constitute the dendritic core moieties, even when the number of cholesteryl moieties remains uniform in each pair. The dendrimer pairs are two first and second generation poly(ethyl ether imine) and poly(propyl ether imine) dendrimers, modified with 4 and 8 cholesteryl esters at the peripheries in each pair, respectively. The dendrimer pairs exhibit differing thermotropic mesophase properties. Microscopic, thermal and X-ray diffraction studies reveal a lamellar mesophase for the first generation ethyl-, first and second generation propyl-linker dendrimers. Whereas, the second generation ethyl-linker dendrimer exhibits a layered structure with a superimposed in-plane modulation, the length of which corresponds to a rectangular column width. The role of the dendrimer core moieties with differing linkers in modifying the mesophase properties is studied. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 degrees C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(Nile blue) modified glassy carbon electrode (PNBMGCE) was fabricated by electropolymerisation of Nile blue (NB) monomer using cyclic voltammetry (CV) and was used for the determination of paracetamol (ACOP), tramadol (TRA) and caffeine (CAF). The electrochemical investigations showed that PNB - film formed on the surface of glassy carbon electrode (GCE) improved the electroactive surface area and displayed a remarkable increase in the peak current and a substantial decrease in over potential of ACOP, TRA and CAF when compared to bare GCE. The dependence of peak current and potential on pH, sweep rate and concentration were also investigated at the surface of PNBMGCE. It showed good sensitivity and selectivity in a wide linear range from 2.0 x 10(-7) to 1.62 x 10(-5) M, 1.0 x 10(-6) to 3.1 x 10(-4) M and 8.0 x 10(-7) to 2.0 x 10(-5) M, with detection limits of 0.08, 0.5 and 0.1 mu M, for ACOP, TRA and CAF, respectively. The PNBMGCE was also successfully applied for the determination of ACOP, TRA and CAF in pharmaceutical dosage forms. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation microstructure of face-centered cubic cobalt subjected to surface mechanical attrition treatment was studied as a function of strain levels. Strain-induced gamma --> epsilon transformation and twinning deformation were evidenced by transmission electron microscopy and were found to progress continuously in ultrafine and nanocrystalline grains as the strain increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between poly(vinylpyrrolidone) (PVP) and the reversed micelles composed of water, AOT, and n-heptane are investigated with the aid of phase diagram, measurements of conductivity and viscosity, Fourier transform infrared (FTIR) spectrum, and dynamic light scattering (DLS). The phase diagrams of water/AOT/heptane in the presence of and absence of PVP are given. The conductivity of the water/AOT/heptane reversed micelle without PVP initially increases and then decreases with the increase of water content, ω0 (the molar ratio of water to AOT), while the plots of conductivity (K) versus ω0 of the reversed micelle in the presence of PVP depend on the PVP concentrations. The plot of K versus ω0 with 2.0%wt PVP is similar to that without PVP. Only the ω0,max (the water content that the maximum conductivity corresponds to) is larger than that without PVP. Nevertheless, the conductivity of the reversed micelle containing more than 4%wt PVP always rises with the increase of the water content in the measured range. The DLS results indicate that the hydrodynamic radius (Rh) in the presence and absence of PVP rises with the increase of ω0. The plots with PVP and without PVP have almost the same value when ω0<17; and after that, it quickly increases with the increase of ω0. It is interesting to find that there is almost no effect of the PVP concentration on the viscosity and Rh of the reversed micelle at ω0 = 15. The FTIR results suggest that the contents of SO3--bound water and Na+-bound water both decrease with PVP added, while the content of the bulky-like water increases. However, the trapped water in the hydrophobic chain of the surfactant is nearly unaffected by PVP. It is also found from the FTIR that the carbonyl group stretching vibration of AOT is fitted into two sub-peaks, which center at 1740 and 1729 cm-1, corresponding to the trans and cis conformations of AOT, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transport measurements were performed on individual PECVD grown MWCNT nanobridge structures. Temperature dependent conductance measurements show that as the temperature is decreased, the conductance also decreases. The nanotubes were able to carry high current densities with the observed maximum at ∼108 A/cm2. High volatile measurements reveal that the PECVD grown MWCNTs break down in segments of nanotube shells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-methylmethacrylate suspended dispersion was used to fabricate multiwalled carbon nanotube (MWCNT) bridges. Using this technique, nanotubes could be suspended between metal electrodes without any chemical etching of the substrate. The electrical measurement on suspended MWCNT bridges shows that the room temperature resistance ranges from under a kω to a few Mω.