912 resultados para LABELLED COMPOUNDS
Resumo:
Sugars and related substances, namely sugar phosphates and ribonucleotides, are important meat flavour precursors. In particular, ribose and ribose 5-phosphate have been shown to be important in aroma development in heated model systems. There are few quantitative data on the concentrations and the variations of sugars and related substances in meat. This paper will report on the analysis of glucose, fructose, ribose, ribose 5-phosphate, fructose 6-phosphate, glucose 6-phosphate and inosine 5'-monophosphate (IMP) in aged beef. Sugars and related compounds were extracted from lean meat and derivatised to the corresponding TMS ethers. Analysis and quantitation of the sugars and sugar phosphates were performed using GC and GC/MS, while IMP analysis was performed using capillary electrophoresis (CE).
Resumo:
A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In this Study, volatile oxidation compounds formed in a commercial conjugated linoleic acid (CLA)-rich oil were quantified and results compared to those found in safflower oil (rich in linoleic acid, LA). Intact oil samples and pure triacylglycerols obtained following elimination of tocopherols and minor compounds were oxidised at 60 degrees C, and volatile oxidation compounds were analysed by solid phase microextraction-gas chromatography with flame ionisation detector and mass spectrometer. Results showed that while, as expected, hexanal was the major volatile oxidation compound found in oil and triacylglycerols rich in LA, both hexanal and heptanal equally were the most abundant compounds in oil and triacylglycerols rich in CLA. Besides, samples rich in CLA also showed significantly high quantities of trans-2-octenal and trans-2-nonenal and the latter, along with heptanal, were absent in samples rich in LA. Results for CLA samples were not easy to interpret since major volatiles found are not expected from theoretically stable hydroperoxides formed in CLA and could in part derive from dioxetanes coming from 1,2-cycloadclitions of CIA with oxygen. Overall, results obtained support evidence that oxidation mechanisms of CLA may differ than those of LA. Also, it was concluded that heptanal determination could serve as a useful marker of oxidation progress in CLA-rich oils. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Wheat flour from plants deficient in sulfur has been shown to contain substantially higher levels of free amino acids, particularly asparagine and glutamine, than flour from wheat grown where sulfur nutrition was sufficient. Elevated levels of asparagine resulted in acrylamide levels up to 6 times higher in sulfur-deprived wheat flour, compared with sulfur-sufficient wheat flour, for three varieties of winter wheat. The volatile compounds from flour, heated at 180 degrees C for 20 min, have been compared for these three varieties of wheat grown with and without sulfur fertilizer. Approximately 50 compounds were quantified in the headspace extracts of the heated flour; over 30 compounds were affected by sulfur fertilization, and 15 compounds were affected by variety. Unsaturated aldehydes formed from aldol condensations, Strecker. aldehydes, alkylpyrazines, and low molecular weight alkylfurans were found at higher concentrations in the sulfur-deficient flour, whereas low molecular weight pyrroles and thiophenes and sugar breakdown products were found at higher concentrations in the sulfur-sufficient flour. The reasons for these differences and the relationship between acrylamide formation and aroma volatile formation are discussed.
Resumo:
The aroma volatiles of walnuts from three different geographical locations were studied. Over 110 compounds were identified in the headspace volatiles, many for the first time as walnut components. Walnuts from China and the Ukraine contained high levels of lipid-derived volatiles, in particular hexanal, pentanal, 1-hexanol and 1-pentanol from linoleic acid breakdown, and 1-penten-3-ol from alpha-linolenic acid breakdown. Chilean walnuts, however, contained high levels of alkylbenzenes of molecular weight 120, with the lipid-derived aldehydes and alcohols present at much lower levels than in the other two walnut samples. The relationship between the fatty acid composition of the walnuts and their volatile composition is discussed. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
The aroma volatiles of grilled beef, from animals fed either grass silage or cereal concentrates, were compared. Aberdeen Angus and Holstein-Friesian cross-breed steers, slaughtered at 14 or 24 months, were studied. Compounds formed from linoleic acid, in particular 2-pentylfuran, 1-octen-3-ol, (Z)-2-octen-1-ol, and hexanal were at higher levels in the meat from the animals fed concentrates. Phytenes and compounds formed from α-linolenic acid, in particular 1-penten-3-ol and (Z)-2-penten-1-ol, were at higher levels in the meat of animals fed silage. Differences due to breed were small and not consistent with slaughter age. Dimethyl disulfide, dimethyl disulfide and phenol were at higher levels in the meat of animals slaughtered at 24 months and may contribute to grilled beef aroma.
Resumo:
The effect on lamb muscle of five dietary supplements high in polyunsaturated fatty acids (PUFA) was measured. The supplements were linseed oil, fish oil, protected lipid (high in linoleic acid (C18:2 n-6) and alpha-linolenic acid (C18:3 n-3)), fish oil/marine algae (1:1), and protected lipid/marine algae (1:1). Eicosapentaenoic acid (C20:5 n-3) and docosahexaenoic acid (C22:6 n-3) were found in the highest amounts in the meat from lambs fed diets containing algae. Meat from lambs fed protected lipid had the highest levels of C18:2 n-6 and C18:3 n-3, due to the effectiveness of the protection system. In grilled meat from these animals, volatile compounds derived from n-3 fatty acids were highest in the meat from the lambs fed the fish oil/algae diet, whereas compounds derived from n-6 fatty acids were highest in the meat from the lambs fed the protected lipid diet. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
THE OXIDATIVE STABILITY OF OIL-IN-WATER EMULSIONS, CONTAINING BOVINE SERUM ALBUMIN (BSA) AND VIRGIN OLIVE OIL PHENOLIC COMPOUNDS, WAS STUDIED BY THE DETERMINATION OF THE FORMATION OF VOLATILE OXIDATION PRODUCTS. FOUR OIL-IN-WATER EMULSIONS WITH AND WITHOUT PHENOLS ISOLATED FROM VIRGIN OLIVE OIL AND BSA WERE PREPARED. THESE MODEL SYSTEMS WERE STORED AT 60 degrees C TO ACCELERATE LIPID OXIDATION. VOLATILE OXIDATION PRODUCTS WERE MONITORED EVERY THREE DAYS BY HEADSPACE SOLID-PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY. ALTHOUGH INDIVIDUALLY OLIVE OIL PHENOLIC COMPOUNDS AND BSA SHOWED A SIGNIFICANT ANTIOXIDANT ACTIVITY, THE COMBINATION OF THESE COMPONENTS SHOWED A VERY GOOD SYNERGY, QUANTIFIED AS 127%. IN FACT, THE EMULSION CONTAINING BOTH PHENOLIC COMPOUNDS AND BSA SHOWED A VERY LOW LEVEL OF OXIDATIVE DETERIORATION AFTER 45 DAYS STORAGE.
Resumo:
Virgin olive oil is valued for its flavor, but unacceptable off-flavors may develop on storage in food products containing this oil due to oxidation. The oxidative stability of oil-in-water emulsions containing bovine serum albumin (BSA) and virgin olive oil phenolic compounds was studied. Four oil-in-water emulsions with and without BSA and phenols isolated from virgin olive oil were prepared. These model systems were stored at 60 degrees C to speed up lipid oxidation. Primary and secondary oxidation products were monitored every three days. Peroxide values and conjugated diene contents were determined as measures of the primary oxidation products. p-Anisidine values and volatile compounds were determined as measures of the secondary oxidation products. This latter determination was carried out by headspace solid-phase microextraction coupled with gas chromatography. Although olive oil phenolic compounds and BSA contributed some antioxidant activity when present as individual additives, the combination of BSA with phenols in an emulsion showed 58-127% synergy, depending on which analytical method was used in the calculation. The emulsion containing phenolic compounds and BSA showed a low level of deterioration after 45 days of storage at 60 degrees C.
Resumo:
The influence of adjunct brine cultures on the volatile compounds in Feta-type cheeses made from bovine milk was studied. Four batches of brine were produced: one with no added adjuncts, a second containing Lactobacillus paracasei subsp. paracasei, a third containing Lb. paracasei subsp. paracasei plus Debaryomyces hansenii and a fourth with Lb. paracasei subsp. paracasei plus Yarrowia lipolytica. All the cultures were isolated from commercial Feta brines. Aroma compounds were analysed by dynamic headspace analysis, on-line coupled with GC/MS. The most important volatile compounds were quantified in the experimental cheeses; it was concluded that the use of Lb. paracasei subsp. paracasei and D. hansenii as adjuncts in the manufacture of Feta-type cheeses contribute to the formation of a richer pattern of aroma compounds, namely alcohols, aldehydes and esters. The inclusion of Y. lipolytica resulted in the production of undesirable aroma compounds that are not part of the usual volatile profile of high quality Feta cheeses. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Headspace solid phase microextraction (HS-SPME) has been used to isolate the headspace volatiles formed during oxidation of oil-in-water emulsions. Qualitative and quantitative analyses with an internal standard were performed by GC-FID. Four sample temperatures for adsorption (30, 40, 50 and 60 C) and adsorption times in the range 10-25 min were tested to determine the conditions for the volatile concentration to reach equilibrium. The optimum conditions were at 50 C for 20 min. The method was applied to monitor changes in volatile composition during oxidation of an o/w emulsion. SPME was a simple, reproducible and sensitive method for the analysis of volatile oxidation products in oil-in-water emulsions. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A new homo-proline tetrazole derivative 7 has been prepared and shown to have improved properties for achieving asymmetric Michael addition of carbonyl compounds to nitro-olefins.
Resumo:
Lack of sulphur nutrition during potato cultivation has been shown to have profound effects on tuber composition, affecting in particular the concentrations of free asparagine, other amino acids and sugars. This is important because free asparagine and sugars react at high temperatures to form acrylamide, a suspect carcinogen. Free amino acids and sugars also form a variety of other compounds associated with colour and flavour. In this study the volatile aroma compounds formed in potato flour heated at 180 °C for 20 min were compared for three varieties of potato grown, with and without sulphur fertiliser. Approximately 50 compounds were quantified in the headspace extracts of the heated flour, of which over 40 were affected by sulphur fertilisation and/or variety. Many of the 41 compounds found at higher concentrations in the sulphur-deficient flour were Strecker aldehydes and compounds formed from their condensation, whereas only one compound, benzaldehyde, behaved in the same way as did acrylamide and was found at higher concentrations in the sulphur-sufficient flour. The reasons for these effects are discussed.
Resumo:
Sugars and free amino acids were measured in three potato varieties widely available in the United Kingdom. French fries were cooked for 6, 9 and 12 min at 180°C, and the effects of cooking time and variety on volatile composition were examined. Maillard reaction-derived aroma compounds increased as cooking time increased. Varieties Desiree and Maris Piper were relatively high in sugars and aroma compounds derived from sugars, e.g. 5-methylfurfural and dihydro-2-methyl- 3[2H]-furanone, whereas variety King Edward was relatively high in free amino acids and their associated aroma compounds, such as pyrazines and Strecker aldehydes.