922 resultados para Juta fibers
Resumo:
Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.
Resumo:
The 22q11.2 deletion syndrome (22q11DS) is a widely recognized genetic model allowing the study of neuroanatomical biomarkers that underlie the risk for developing schizophrenia. Recent advances in magnetic resonance image analyses enable the examination of structural connectivity integrity, scarcely used in the 22q11DS field. This framework potentially provides evidence for the disconnectivity hypothesis of schizophrenia in this high-risk population. In the present study, we quantify the whole brain white matter connections in 22q11DS using deterministic tractography. Diffusion Tensor Imaging was acquired in 30 affected patients and 30 age- and gender-matched healthy participants. The Human Connectome technique was applied to register white matter streamlines with cortical anatomy. The number of fibers (streamlines) was used as a measure of connectivity for comparison between groups at the global, lobar and regional level. All statistics were corrected for age and gender. Results showed a 10% reduction of the total number of fibers in patients compared to controls. After correcting for this global reduction, preserved connectivity was found within the right frontal and right parietal lobes. The relative increase in the number of fibers was located mainly in the right hemisphere. Conversely, an excessive reduction of connectivity was observed within and between limbic structures. Finally, a disproportionate reduction was shown at the level of fibers connecting the left fronto-temporal regions. We could therefore speculate that the observed disruption to fronto-temporal connectivity in individuals at risk of schizophrenia implies that fronto-temporal disconnectivity, frequently implicated in the pathogenesis of schizophrenia, could precede the onset of symptoms and, as such, constitutes a biomarker of the vulnerability to develop psychosis. On the contrary, connectivity alterations in the limbic lobe play a role in a wide range of psychiatric disorders and therefore seem to be less specific in defining schizophrenia.
Resumo:
Diabetes mellitus (DM) is a major cause of peripheral neuropathy. More than 220 million people worldwide suffer from type 2 DM, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy. While of significant medical importance, the pathophysiological changes present in DPN are still poorly understood. To get more insight into DPN associated with type 2 DM, we decided to use the rodent model of this form of diabetes, the db/db mice. During the in-vivo conduction velocity studies on these animals, we observed the presence of multiple spiking followed by a single stimulation. This prompted us to evaluate the excitability properties of db/db peripheral nerves. Ex-vivo electrophysiological evaluation revealed a significant increase in the excitability of db/db sciatic nerves. While the shape and kinetics of the compound action potential of db/db nerves were the same as for control nerves, we observed an increase in the after-hyperpolarization phase (AHP) under diabetic conditions. Using pharmacological inhibitors we demonstrated that both the peripheral nerve hyperexcitability (PNH) and the increased AHP were mostly mediated by the decreased activity of Kv1-channels. Importantly, we corroborated these data at the molecular level. We observed a strong reduction of Kv1.2 channel presence in the juxtaparanodal regions of teased fibers in db/db mice as compared to control mice. Quantification of the amount of both Kv1.2 isoforms in DRG neurons and in the endoneurial compartment of peripheral nerve by Western blotting revealed that less mature Kv1.2 was integrated into the axonal membranes at the juxtaparanodes. Our observation that peripheral nerve hyperexcitability present in db/db mice is at least in part a consequence of changes in potassium channel distribution suggests that the same mechanism also mediates PNH in diabetic patients. ∗Current address: Department of Physiology, UCSF, San Francisco, CA, USA.
Resumo:
Cervical lymph nodes biopsies from 31 HIV positive patients (with or without AIDS) were studied by histologic methods and immunohistochemistry (StreptABC staining of paraffin sections) to identify cellular and extracellular matrix components. The results were the following: (1) the biopsies were included in the stages of follicular hyperplasia without fragmentation FH-FF (4 cases); follicular hyperplasia with follicular fragmentation FH+FF (16 cases); follicular involution FI (6 cases) and diffuse pattern DP (5 cases); (2) the most important alteration was the germinal centers disruption due to follicle lysis, which began in the light zone; (3) there was coincidence between intrafollicular hemorrhages and segmental hyaline mycroangiopathy; (4) during the progression of the disease occurred: (a) an increase in the number of mast cells, CD68+ and Mac387+ macrophages; (b) a diffuse augment of collagen III, elastic fibers, laminin, fibronectin and proteoglycans; (c) maintenance of Factor VIII - related antigens in the vascular endothelial cells, with decrease in the expression of Ulex-Europeus I lectin. Follicular hyperplasia (FH-FF or FH+FF) was the most common histologic pattern recognized in the lymph nodes of patients without AIDS and follicular involution and difuse pattern were seen in those who had AIDS. The results indicate that the lymph node biopsies may provide important information about the evolutive stage of the disease and its prognosis.
Resumo:
Angiotensin (Ang) II has for long been identified as a neuropeptide located within neurons and pathways of the central nervous system involved in the control of thirst and cardio-vascular homeostasis. The presence of Ang II in ganglionic neurons of celiac, dorsal root, and trigeminal ganglia has only recently been described in humans and rats. Ang II-containing fibers were also found in the mesenteric artery and the heart, together with intrinsic Ang II-containing cardiac neurons. Ganglionic neurons express angiotensinogen and co-localize it with Ang II. Its intraneuronal production as a neuropeptide appears to involve angiotensinogen processing enzymes other than renin. Immunocytochemical and gene expression data suggest that neuronal Ang II acts as a neuromodulatory peptide and co-transmitter in the peripheral autonomic, and also sensory nervous system. Neuronal Ang II probably competes with humoral Ang II for effector cell activation. Its functional role, however, still remains to be determined. Angiotensinergic neurotransmission in the autonomic nervous system is a potential new target for therapeutic interventions in many common diseases such as essential hypertension, heart failure, and cardiac arrhythmia.
Resumo:
The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARalpha and PPARbeta isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARalpha-/-, PPARbeta-/-, and double PPARalpha-/- beta-/- mice. Heart and soleus muscle analyses show that the deletion of PPARalpha induces a decrease of the HAD activity (beta-oxidation) while soleus contractile phenotype remains unchanged. A PPARbeta deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARbeta and PPARalpha functions since double gene deletion PPARalpha-PPARbeta mostly reproduces the null PPARalpha-mediated reduced beta-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARbeta is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARalpha in PPARalpha null mice.
Resumo:
In addition to functionally affected neuronal signaling pathways, altered axonal, dendritic, and synaptic morphology may contribute to hippocampal hyperexcitability in chronic mesial temporal lobe epilepsies (MTLE). The sclerotic hippocampus in Ammon's horn sclerosis (AHS)-associated MTLE, which shows segmental neuronal cell loss, axonal reorganization, and astrogliosis, would appear particularly susceptible to such changes. To characterize the cellular hippocampal pathology in MTLE, we have analyzed hilar neurons in surgical hippocampus specimens from patients with MTLE. Anatomically well-preserved hippocampal specimens from patients with AHS (n = 44) and from patients with focal temporal lesions (non-AHS; n = 20) were studied using confocal laser scanning microscopy (CFLSM) and electron microscopy (EM). Hippocampal samples from three tumor patients without chronic epilepsies and autopsy samples were used as controls. Using intracellular Lucifer Yellow injection and CFLSM, spiny pyramidal, multipolar, and mossy cells as well as non-spiny multipolar neurons have been identified as major hilar cell types in controls and lesion-associated MTLE specimens. In contrast, none of the hilar neurons from AHS specimens displayed a morphology reminiscent of mossy cells. In AHS, a major portion of the pyramidal and multipolar neurons showed extensive dendritic ramification and periodic nodular swellings of dendritic shafts. EM analysis confirmed the altered cellular morphology, with an accumulation of cytoskeletal filaments and increased numbers of mitochondria as the most prominent findings. To characterize cytoskeletal alterations in hilar neurons further, immunohistochemical reactions for neurofilament proteins (NFP), microtubule-associated proteins, and tau were performed. This analysis specifically identified large and atypical hilar neurons with an accumulation of low weight NFP. Our data demonstrate striking structural alterations in hilar neurons of patients with AHS compared with controls and non-sclerotic MTLE specimens. Such changes may develop during cellular reorganization in the epileptogenic hippocampus and are likely to contribute to the pathogenesis or maintenance of temporal lobe epilepsy.
Resumo:
The authors present morphogenetic and biomechanical approaches on the concept of the Schistosoma mansoni granulomas, considering them as organoid structures that depend on cellular adhesion and sorting, forming rearrangement into hierarchical concentric layers, creating tension-dependent structures, aiming to acquire round form, since this is the minimal energy form, in which opposing forces pull in equally from all directions and are in balance. From the morphogenetic point of view, the granulomas function as little organs, presenting maturative and involutional stages in their development with final disappearance (pre-granulomatous stages, subdivided in: weakly and/or initial reactive and exudative; granulomatous stages: exudative-productive, productive and involutional). A model for the development of granulomas was suggested, according to the following stages: encapsulating, focal histolysis, fiber production, orientation and compacting and involution and desintegration. The authors concluded that schistosomal granuloma is not a tangled web of individual cells and fibers, but an organized structure composed by host and parasite components, which is not formed to attack the miracidia, but functions as an hybrid interface between two different phylogenetic beings.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) showed a dose-dependent, persistent stimulation of the enzymes choline acetyltransferase (ChAT), glutamic acid decarboxylase and glutamine synthetase. After elimination of the proliferating cells by treatment of the cultures with Ara-C (0.4 microM) only the cholinergic marker enzyme, ChAT, could be stimulated by tumor promoters. The non-promoting phorbol ester, 4 alpha-phorbol 12,13-didecanoate proved to be inactive in these cultures, whereas the potent non-phorbol tumor promoter, mezerein, produced an even greater stimulatory effect than PMA. Since PMA and mezerein are potent and specific activators of protein kinase C, the present results suggest a role for this second messenger in the development of cholinergic telencephalon neurons. Stimulation of ChAT required prolonged exposure (48 h) of the cultures to PMA and the responsiveness of the cholinergic neurons to the tumor promoters decreased with progressive cellular maturation. The cholinergic telencephalon neurons showed the same pattern of responsiveness for tumor promoters as for nerve growth factor (NGF). However, the combined treatment with NGF and either PMA or mezerein produced an additive stimulatory effect, suggesting somewhat different mechanisms of action.
Resumo:
Objectives: The AMS 800TM is the current artificial urinary sphincter (AUS) for incontinence due to intrinsic sphincter deficiency. Despite good clinical results, technical failures inherent to the hydraulic mechanism or urethral ischemic injury contribute to revisions up to 60%. We are developing an electronic AUS, called ARTUS to overcome the rigors of AMS. The objective of this study was to evaluate the technical efficacy and tissue tolerance of the ARTUS system in an animal model.Methods: The ARTUS is composed by three parts: the contractile unit, a series of rings and an integrated microprocessor. The contractile unit is made of Nitinol fibers. The rings are placed around the urethra to control the flow of urine by squeezing the urethra. They work in a sequential alternative mode and are controlled by a microprocessor. In the first phase a three-rings device was used while in the second phase a two-rings ARTUS was used. The device was implanted in 14 sheep divided in two groups of six and eight animals for study purpose. The first group aimed at bladder leak point pressure (BLPP) measurement and validation of the animal model; the second group aimed at verifying mid-term tissue tolerance by explants at twelve weeks. General animal tolerance was also evaluated.Results: The ARTUS system implantation was uneventful. When the system was activated, the BLPP was measured at 1.038±0.044 bar (mean±SD). Urethral tissue analysis did not show significant morphological changes. No infection and no sign of discomfort were noted in animals at 12 weeks.Conclusions: The ARTUS proved to be effective in continence achievement in this study. Histological results support our idea that a sequential alternative mode can avoid urethral atrophy and ischemia. Further technical developments are needed to verify long-term outcome and permit human use.
Resumo:
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup-shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures-organelles complex (SO-complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO-complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO-complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus.
Resumo:
Two of the major problems facing the Amazon - human migration from the other areas and uncontrolled deforestation - constitute the greatest risk for the establishment of endemic Chagas disease in this part of Brazil. At least 18 species of triatomines had been found in the Brazilian Amazon, 10 of them infected with Trypanosoma cruzi, associated with numerous wild reservoirs. With wide-range deforestation, wild animals will perforce be driven into other areas, with tendency for triatomines to become adapted to alternative food sources in peri and intradomicilies. Serological surveys and cross-sectional studies for Chagas disease, carried out in rural areas of the Rio Negro, in the Brazilian Amazon, showed a high level of seropositivity for T. cruzi antibodies. A strong correlation of seroreactivity with the contact of gatherers of piaçava fibers with wild triatomines could be evidenced.
Resumo:
Metabolic engineering of plants allows the possibility of using crops for the synthesis of novel polymers having useful material properties. Strong and flexible protein-based polymers, which are based on the structure of silk and elastin have been synthesized in transgenic plants. A wide range of polyhydroxyalkanoates having properties ranging from stiff plastics to soft elastomers and glues have been synthesized in various compartments of plants, such as the cytoplasm, plastid and peroxisome. These plant biomaterials could replace, in part, the synthetic plastics, fibers and elastomers produced from petroleum, thus offering the advantage of renewability, sustainability and biodegradability.
Resumo:
Peripheral nerve injuries with loss of nervous tissue are a significant clinical problem and are currently treated using autologous nerve transplants. To avoid the need for donor nerve, which results in additional morbidity such as loss of sensation and scarring, alternative bridging methods have been sought. Recently we showed that an artificial nerve conduit moulded from fibrin glue is biocompatible to nerve regeneration. In this present study, we have used the fibrin conduit or a nerve graft to bridge either a 10 mm or 20 mm sciatic nerve gap and analyzed the muscle recovery in adult rats after 16 weeks. The gastrocnemius muscle weights of the operated side were similar for both gap sizes when treated with nerve graft. In contrast, muscle weight was 48.32 ± 4.96% of the contra-lateral side for the 10 mm gap repaired with fibrin conduit but only 25.20 ± 2.50% for the 20 mm gap repaired with fibrin conduit. The morphology of the muscles in the nerve graft groups showed an intact, ordered structure, with the muscle fibers grouped in fascicles whereas the 20 mm nerve gap fibrin group had a more chaotic appearance. The mean area and diameter of fast type fibers in the 20 mm gap repaired with fibrin conduits were significantly (P<0.01) worse than those of the corresponding 10 mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size. Furthermore, the 10 mm gaps repaired with either nerve graft or fibrin conduit showed similar muscle fiber size. These results indicate that the fibrin conduit can effectively treat short nerve gaps but further modification such as the inclusion of regenerative cells may be required to attain the outcomes of nerve graft for long gaps.
Resumo:
The monocarboxylate transporter MCT2 belongs to a large family of membrane proteins involved in the transport of lactate, pyruvate and ketone bodies. Although its expression in rodent brain has been well documented, the presence of MCT2 in the human brain has been questioned on the basis of low mRNA abundance. In this study, the distribution of the monocarboxylate transporter MCT2 has been investigated in the cortex of normal adult human brain using an immunohistochemical approach. Widespread neuropil staining in all cortical layers was observed by light microscopy. Such a distribution was very similar in three different cortical areas investigated. At the cellular level, the expression of MCT2 could be observed in a large number of neurons, in fibers both in grey and white matter, as well as in some astrocytes, mostly localized in layer I and in the white matter. Double staining experiments combined with confocal microscopy confirmed the neuronal expression but also suggested a preferential postsynaptic localization of synaptic MCT2 expression. A few astrocytes in the grey matter appeared to exhibit MCT2 labelling but at low levels. Electron microscopy revealed strong MCT2 expression at asymmetric synapses in the postsynaptic density and also within the spine head but not in the presynaptic terminal. These data not only demonstrate neuronal MCT2 expression in human, but since a portion of it exhibits a distinct synaptic localization, it further supports a putative role for MCT2 in adjustment of energy supply to levels of activity.