953 resultados para Josef Oriol, Beato, 1650-1702
Resumo:
An encryption scheme is non-malleable if giving an encryption of a message to an adversary does not increase its chances of producing an encryption of a related message (under a given public key). Fischlin introduced a stronger notion, known as complete non-malleability, which requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti later proposed a comparison-based definition of this security notion, which is more in line with the well-studied definitions proposed by Bellare et al. The authors also provide additional feasibility results by proposing two constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Therefore, the only previously known completely non-malleable (and non-interactive) scheme in the standard model, is quite inefficient as it relies on generic NIZK approach. They left the existence of efficient schemes in the common reference string model as an open problem. Recently, two efficient public-key encryption schemes have been proposed by Libert and Yung, and Barbosa and Farshim, both of them are based on pairing identity-based encryption. At ACISP 2011, Sepahi et al. proposed a method to achieve completely non-malleable encryption in the public-key setting using lattices but there is no security proof for the proposed scheme. In this paper we review the mentioned scheme and provide its security proof in the standard model. Our study shows that Sepahi’s scheme will remain secure even for post-quantum world since there are currently no known quantum algorithms for solving lattice problems that perform significantly better than the best known classical (i.e., non-quantum) algorithms.
Resumo:
Recently, a convex hull-based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. While some rudimentary security issues of this protocol have been discussed, a comprehensive security analysis has been lacking. In this paper, we analyze the security of this convex hull-based protocol. In particular, we show two probabilistic attacks that reveal the user’s secret after the observation of only a handful of authentication sessions. These attacks can be efficiently implemented as their time and space complexities are considerably less than brute force attack. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values that cross the threshold of usability.
Resumo:
We study the natural problem of secure n-party computation (in the computationally unbounded attack model) of circuits over an arbitrary finite non-Abelian group (G,⋅), which we call G-circuits. Besides its intrinsic interest, this problem is also motivating by a completeness result of Barrington, stating that such protocols can be applied for general secure computation of arbitrary functions. For flexibility, we are interested in protocols which only require black-box access to the group G (i.e. the only computations performed by players in the protocol are a group operation, a group inverse, or sampling a uniformly random group element). Our investigations focus on the passive adversarial model, where up to t of the n participating parties are corrupted.
Resumo:
WG-7 is a stream cipher based on WG stream cipher and has been designed by Luo et al. (2010). This cipher is designed for low cost and lightweight applications (RFID tags and mobile phones, for instance). This paper addresses cryptographic weaknesses of WG-7 stream cipher. We show that the key stream generated by WG-7 can be distinguished from a random sequence after knowing 213.5 keystream bits and with a negligible error probability. Also, we investigate the security of WG-7 against algebraic attacks. An algebraic key recovery attack on this cipher is proposed. The attack allows to recover both the internal state and the secret key with the time complexity about 2/27.
Resumo:
Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a “commodity” well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(ℓ · n 2) field elements, where ℓ is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.
Resumo:
Phishing is deceptive collection of personal information leading to embezzlement, identity theft, and so on. Preventive and combative measures have been taken by banking institutions, software vendors, and network authorities to fight phishing. At the forefront of this resilience are consortiums such as APWG (Anti-Phishing Working Group) and PhishTank, the latter being a collaborative platform where everyone can submit potentially phishing web-pages and classify web-pages as either phish or genuine. PhishTank also has an API that the browsers use to notify users when she tries to load a phishing page. There are some organizations and individuals who are very active and highly accurate in classifying web-pages on PhishTank. In this paper, we propose a defense model that uses these experts to fight phishing.
Resumo:
Numeric set watermarking is a way to provide ownership proof for numerical data. Numerical data can be considered to be primitives for multimedia types such as images and videos since they are organized forms of numeric information. Thereby, the capability to watermark numerical data directly implies the capability to watermark multimedia objects and discourage information theft on social networking sites and the Internet in general. Unfortunately, there has been very limited research done in the field of numeric set watermarking due to underlying limitations in terms of number of items in the set and LSBs in each item available for watermarking. In 2009, Gupta et al. proposed a numeric set watermarking model that embeds watermark bits in the items of the set based on a hash value of the items’ most significant bits (MSBs). If an item is chosen for watermarking, a watermark bit is embedded in the least significant bits, and the replaced bit is inserted in the fractional value to provide reversibility. The authors show their scheme to be resilient against the traditional subset addition, deletion, and modification attacks as well as secondary watermarking attacks. In this paper, we present a bucket attack on this watermarking model. The attack consists of creating buckets of items with the same MSBs and determine if the items of the bucket carry watermark bits. Experimental results show that the bucket attack is very strong and destroys the entire watermark with close to 100% success rate. We examine the inherent weaknesses in the watermarking model of Gupta et al. that leave it vulnerable to the bucket attack and propose potential safeguards that can provide resilience against this attack.
Resumo:
The sum of k mins protocol was proposed by Hopper and Blum as a protocol for secure human identification. The goal of the protocol is to let an unaided human securely authenticate to a remote server. The main ingredient of the protocol is the sum of k mins problem. The difficulty of solving this problem determines the security of the protocol. In this paper, we show that the sum of k mins problem is NP-Complete and W[1]-Hard. This latter notion relates to fixed parameter intractability. We also discuss the use of the sum of k mins protocol in resource-constrained devices.
Resumo:
Boolean functions and their Möbius transforms are involved in logical calculation, digital communications, coding theory and modern cryptography. So far, little is known about the relations of Boolean functions and their Möbius transforms. This work is composed of three parts. In the first part, we present relations between a Boolean function and its Möbius transform so as to convert the truth table/algebraic normal form (ANF) to the ANF/truth table of a function in different conditions. In the second part, we focus on the special case when a Boolean function is identical to its Möbius transform. We call such functions coincident. In the third part, we generalize the concept of coincident functions and indicate that any Boolean function has the coincidence property even it is not coincident.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.
Resumo:
There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.
Resumo:
We present two unconditional secure protocols for private set disjointness tests. In order to provide intuition of our protocols, we give a naive example that applies Sylvester matrices. Unfortunately, this simple construction is insecure as it reveals information about the intersection cardinality. More specifically, it discloses its lower bound. By using the Lagrange interpolation, we provide a protocol for the honest-but-curious case without revealing any additional information. Finally, we describe a protocol that is secure against malicious adversaries. In this protocol, a verification test is applied to detect misbehaving participants. Both protocols require O(1) rounds of communication. Our protocols are more efficient than the previous protocols in terms of communication and computation overhead. Unlike previous protocols whose security relies on computational assumptions, our protocols provide information theoretic security. To our knowledge, our protocols are the first ones that have been designed without a generic secure function evaluation. More important, they are the most efficient protocols for private disjointness tests in the malicious adversary case.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a nonstandard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (geometry of numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.
Resumo:
In this paper we present truncated differential analysis of reduced-round LBlock by computing the differential distribution of every nibble of the state. LLR statistical test is used as a tool to apply the distinguishing and key-recovery attacks. To build the distinguisher, all possible differences are traced through the cipher and the truncated differential probability distribution is determined for every output nibble. We concatenate additional rounds to the beginning and end of the truncated differential distribution to apply the key-recovery attack. By exploiting properties of the key schedule, we obtain a large overlap of key bits used in the beginning and final rounds. This allows us to significantly increase the differential probabilities and hence reduce the attack complexity. We validate the analysis by implementing the attack on LBlock reduced to 12 rounds. Finally, we apply single-key and related-key attacks on 18 and 21-round LBlock, respectively.