846 resultados para Invasion ecology
Resumo:
BACKGROUND: With the emergence of Src inhibitors in clinical trials, improved knowledge of the molecular responses of cancer cells to these agents is warranted. This will facilitate the development of tests to identify patients who may benefit from these agents, allow drug activity to be monitored and rationalize the combination of these agents with other treatment modalities. METHODS: This study evaluated the molecular and functional effects of Src inhibitor AZD0530 in human lung cancer cells, by Western blotting and reverse transcription-polymerase chain reaction, and by assays for cell viability, migration, and invasion. RESULTS: Src was activated in four of five cell lines tested and the level corresponded with the invasive potential and the histologic subtype. Clinically relevant, submicromolar concentrations of AZD0530 blocked Src and focal adhesion kinase, resulting in significant inhibition of cell migration and Matrigel invasion. Reactivation of STAT3 and up-regulation of JAK indicated a potential mechanism of resistance. AZD0530 gave a potent and sustained blockage of AKT and enhanced the sensitivity to irradiation. CONCLUSIONS: The results indicated that AZD0530, aside from being a potent inhibitor of tumor cell invasion which could translate to inhibition of disease progression in the clinic, may also lower resistance of lung cancer cells to pro-apoptotic signals.
Resumo:
Global environmental change not only entails changes in mean environmental conditions but also in their variability. Changes in climate variability are often associated with altered disturbance regimes and temporal patterns of resource availability. Here we show that increased variability of soil nutrients strongly promotes another key process of global change, plant invasion. In experimental plant communities, the success of one of the world's most invasive plants, Japanese knotweed, is two- to four-fold increased if extra nutrients are not supplied uniformly, but in a single large pulse, or in multiple pulses of different magnitudes. The superior ability to take advantage of variable environments may be a key mechanism of knotweed dominance, and possibly many other plant invaders. Our study demonstrates that increased nutrient variability can promote plant invasion, and that changes in environmental variability may interact with other global change processes and thereby substantially accelerate ecological change
Resumo:
Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits—fine-tuned by environmental factors—determine success or failure of alien and native plants in temperate grasslands.
Resumo:
1. When entomophilous plants are introduced to a new region, they may leave behind their usual pollinators. In particular, plant species with specialized pollination may then be less likely to establish and spread (i.e. become invasive). Moreover, other reproductive characteristics such as self-compatibility and flowering duration may also affect invasion success. 2. Here, we specifically asked whether plant species' specialization towards pollinator species and families, respectively, as measured in the native range, self-compatibility, flowering duration and their interactions are related to the degree of invasion (i.e. a measure of regional abundance) in non-native regions. 3. We used plant–pollinator interaction data from 119 German grassland sites to calculate unbiased indices of plant specialization towards pollinator species and families for 118 European plant species. We related these specialization indices, flowering duration, self-compatibility and their interactions to the degree of invasion of each species in seven large countries on four non-Eurasian continents. 4. In all models, plant species with long flowering durations had the highest degree of invasion. The best model included the specialization index based on pollinator species instead of the one based on pollinator families. Specialization towards pollinator species had a marginally significant positive effect on the degree of invasion in non-native regions for self-compatible, but not for self-incompatible species. 5. Synthesis. We showed that long flowering duration is related to the degree of invasion in other parts of the world, and a trend that pollinator generalization in the native range may interact with self-compatibility in determining the degree of invasion. Therefore, we conclude that such reproductive characteristics should be considered in risk assessment and management of introduced plant species.
Resumo:
Aim: Accumulating evidence indicates that species may be pre-adapted for invasion success in new ranges. In the light of increasing global nutrient accumulation, an important candidate pre-adaptation for invasiveness is the ability to grow in nutrient-rich habitats. Therefore we tested whether globally invasive species originating from Central Europe have come from more productive rather than less productive habitats. A further important candidate pre-adaptation for invasiveness is large niche width. Therefore, we also tested whether species able to grow across habitats with a wider range of productivity are more invasive. Location: Global with respect to invasiveness, and Central European with respect to origin of study species. Methods We examined whether average habitat productivity and its width across habitats are significant predictors of the success of Central European species as aliens and as weeds elsewhere in the world based on data in the Global Compendium of Weeds. The two habitat productivity measures were derived from nutrient indicator values (after Ellenberg) of accompanying species present in vegetation records of the comprehensive Czech National Phytosociological Database. In the analyses, we accounted for phylogenetic relatedness among species and for size of the native distribution ranges. Results: Species from more productive habitats and with a wider native habitat-productivity niche in Central Europe have higher alien success elsewhere in the world. Weediness of species increased with mean habitat productivity. Niche width was also an important determinant of weediness for species with their main occurrence in nutrient-poor habitats, but not for those from nutrient-rich habitats. Main conclusions: Our results indicate that Central European plant species from productive habitats and those species from nutrient-poor habitat with wide productivity-niche are pre-adapted to become invasive. These results suggest that the world-wide invasion success of many Central European species is likely to have been promoted by the global increase of resource-rich habitats.
Resumo:
Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.
Resumo:
A fundamental assumption in invasion biology is that most invasive species exhibit enhanced performance in their introduced range relative to their home ranges. This idea has given rise to numerous hypotheses explaining “invasion success” by virtue of altered ecological and evolutionary pressures. There are surprisingly few data, however, testing the underlying assumption that the performance of introduced populations, including organism size, reproductive output, and abundance, is enhanced in their introduced compared to their native range. Here, we combined data from published studies to test this hypothesis for 26 plant and 27 animal species that are considered to be invasive. On average, individuals of these 53 species were indeed larger, more fecund, and more abundant in their introduced ranges. The overall mean, however, belied significant variability among species, as roughly half of the investigated species (N = 27) performed similarly when compared to conspecific populations in their native range. Thus, although some invasive species are performing better in their new ranges, the pattern is not universal, and just as many are performing largely the same across ranges.
Resumo:
Soil biota can be important drivers of plant community structure. Depending on the balance between antagonistic and mutualistic interactions, they can limit or promote the success of plant species. This is particularly important in the context of exotic plant invasions where soil biota can either increase the biotic resistance of habitats, or they can shift the balance between exotic and native plants towards the exotics and thereby greatly contribute to their dominance. Here, we explored the role of soil biota in the invasion success of exotic knotweed (Fallopia × bohemica), one of the world's most noxious invasive plants. We created artificial native plant communities that were experimentally invaded by knotweed, using a range of substrates where we manipulated different fractions of soil biota. We found that invasive knotweed benefited more from the overall presence of soil biota than any of the six native species. In particular the presence of the full natural soil biota strongly shifted the competitive balance in favor of knotweed. Soil biota promoted both regeneration and growth of the invader, which suggests that soil organisms may be important both in the early establishment of knotweed and possibly its later dominance of native communities. Addition of activated carbon to the soil made the advantage of knotweed disappear, which suggests that the mechanisms underlying the positive soil biota effects are chemically mediated. Our study demonstrates that soil organisms play a key role in the invasion success of exotic knotweed.