829 resultados para Internet Things Web Middleware Cloud Computing
Distributed and compressed MIKEY mode to secure end-to-end communications in the Internet of things.
Resumo:
Multimedia Internet KEYing protocol (MIKEY) aims at establishing secure credentials between two communicating entities. However, existing MIKEY modes fail to meet the requirements of low-power and low-processing devices. To address this issue, we combine two previously proposed approaches to introduce a new distributed and compressed MIKEY mode for the Internet of Things. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the preshared mode is used in the constrained part of network, while the public key mode is used in the unconstrained part of the network. Furthermore, to mitigate the communication cost we introduce a new header compression scheme that reduces the size of MIKEY’s header from 12 Bytes to 3 Bytes in the best compression case. Preliminary results show that our proposed mode is energy preserving whereas its security properties are preserved untouched.
Resumo:
The continuous flow of technological developments in communications and electronic industries has led to the growing expansion of the Internet of Things (IoT). By leveraging the capabilities of smart networked devices and integrating them into existing industrial, leisure and communication applications, the IoT is expected to positively impact both economy and society, reducing the gap between the physical and digital worlds. Therefore, several efforts have been dedicated to the development of networking solutions addressing the diversity of challenges associated with such a vision. In this context, the integration of Information Centric Networking (ICN) concepts into the core of IoT is a research area gaining momentum and involving both research and industry actors. The massive amount of heterogeneous devices, as well as the data they produce, is a significant challenge for a wide-scale adoption of the IoT. In this paper we propose a service discovery mechanism, based on Named Data Networking (NDN), that leverages the use of a semantic matching mechanism for achieving a flexible discovery process. The development of appropriate service discovery mechanisms enriched with semantic capabilities for understanding and processing context information is a key feature for turning raw data into useful knowledge and ensuring the interoperability among different devices and applications. We assessed the performance of our solution through the implementation and deployment of a proof-of-concept prototype. Obtained results illustrate the potential of integrating semantic and ICN mechanisms to enable a flexible service discovery in IoT scenarios.
Resumo:
Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.
Resumo:
Manufacturing companies have passed from selling uniquely tangible products to adopting a service-oriented approach to generate steady and continuous revenue streams. Nowadays, equipment and machine manufacturers possess technologies to track and analyze product-related data for obtaining relevant information from customers’ use towards the product after it is sold. The Internet of Things on Industrial environments will allow manufacturers to leverage lifecycle product traceability for innovating towards an information-driven services approach, commonly referred as “Smart Services”, for achieving improvements in support, maintenance and usage processes. The aim of this study is to conduct a literature review and empirical analysis to present a framework that describes a customer-oriented approach for developing information-driven services leveraged by the Internet of Things in manufacturing companies. The empirical study employed tools for the assessment of customer needs for analyzing the case company in terms of information requirements and digital needs. The literature review supported the empirical analysis with a deep research on product lifecycle traceability and digitalization of product-related services within manufacturing value chains. As well as the role of simulation-based technologies on supporting the “Smart Service” development process. The results obtained from the case company analysis show that the customers mainly demand information that allow them to monitor machine conditions, machine behavior on different geographical conditions, machine-implement interactions, and resource and energy consumption. Put simply, information outputs that allow them to increase machine productivity for maximizing yields, save time and optimize resources in the most sustainable way. Based on customer needs assessment, this study presents a framework to describe the initial phases of a “Smart Service” development process, considering the requirements of Smart Engineering methodologies.
Resumo:
Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.
Resumo:
L'Internet of Things (IoT) è oggetto di grande interesse per la ricerca e per l'industria. Le numerose tecnologie che sono state sviluppate rendono possibile la creazione di nuovi e utili servizi, ma introducono problemi legati alla reciproca incompatibilità. Nell'elaborato si analizza nel dettaglio questa situazione e si descrive l'implementazione di un sistema che ha come obiettivo la realizzazione di una rete composta da dispositivi che fanno uso di tecnologie differenti. Il progetto usa un Raspberry Pi come router, il cui scopo è quello di gestire le differenze fra gli standard di comunicazione utilizzati. Le tecnologie wireless supportate sono: WiFi, Bluetooth, ZigBee, nRF24L01 e moduli radio 433MHz. Sulla rete cosi formata è inoltre possibile lo sviluppo di applicazioni IoT, grazie alle logiche di funzionamento messe a disposizione dal sistema.
Resumo:
The Internet of Things is a technological innovation, based on artifacts and consolidated concepts like Internet and Smart Objects. Its growing business application of Internet of Things makes necessary to evaluate the strategy, benefits and challenges of this technology application. The main objective of this paper is to present the definition of Internet of Things, based on the most cited articles and as a secondary objective, present publication statistics classified by year and related terms, like ubiquitous computation. One of the conclusions is that papers related to business represent only 5% of all the papers analyzed by this research, considering just the papers published on journals. It shows that there is a great field to research on Business Administration.
Resumo:
Los geógrafos ahora tienen a su disposición la red mundial de INTERNET. Esta res es mucho más que un depósito gigante de datos y programas. Es un cúmulo de experiencias humanas que incluyen texto, artículos, imagen, video y foros de discusión. Es una nueva forma de procesamiento a la información de formas que antes considerábamos imposibles. El profesional que continúe procesando y obteniendo información de la manera tradicional se estará quedando al margen de nuevo conocimiento disponible a diario en INTERNET. El profesional de hoy no se limita a recopilar información en una biblioteca o librería, sino que accesa directamente sitios de búsqueda que le permitirán encontrar rápidamente los datos que busca. Un ejemplo, son los meteorólogos que tienen en INTERNET su mejor herramienta, ya que pueden recuperar imágenes sobre el clima casi inmediatamente después que son almacenadas desde el satélite, lo cual les permite evaluar y discernir sobre el estado actual del clima (Aberdeen University Compiting Center, 1996). Las imágenes las pueden ver y bajar a su computadora individual para su propio uso. Los profesores en la actualidad brindan al estudiante todo su material almacenándolo en INTERNET. La relación profesor-estudiante ya no es la misma. Al estudiante se le exige encontrar la información en su computadora y asimilarla. El viejo cuaderno no es necesario, las lecciones pueden ser recuperadas para su estudio sin que el profesor tenga que impartirlas, como se hace en la mayoría de las universidades de los Estados Unidos (Ohio State University, 1996). En general, este articulo persigue mostrar a los profesionales de las ciencias geográficas, dónde encontrar la información que buscan t cómo localizar más de lo que imaginan con la red INTERNET. ABSTRACT Geographers now have at their disposition the world network of INTERNET. This network is much more than just a large deposit of digital data and programs. It is an accumulation of human experiences that include text, articles, images, videos, and discussion bulletin boards. It is a new form of processing and managing information that was previously considered impossible. The professional who continues searching and obtaining information by traditional methods will be left on the fringes of this new wave of digital information and material available daily on INTERNET. Hence, a professional is not limited to compiling information in libraries or bookstores as direct and rapid access of desired research materials is available on the INTERNET. For example, meteorologists have in INTERNET their best tool in that they can acquire meteorologic satellite images, which permit them to evaluate and discern the actual present climatic situation (Aberdeen University Computing Center, 1996). One can see and then down load to one´s personal computer imagines of interest for personal use. Professors can offer to students all their materials for a class through and stores on the INTERNET. The relationship between professor and student is not the same. Students can be asked to access and assimilate the information via individual computers connected to the INTERNTET. Notebooks are becoming obsolete given that all class lectures and materials could be placed on the INTERNET for review without a professor having to give a lecture, as is being done in many universities of the United States (Ohio State University, 1996).This article pursues showing, in general, where professionals in Geographical Sciences can find available information and much more on the INTERNET.
Resumo:
Negli ultimi 50 anni Internet è passata da una piccola rete di ricerca, formata da pochi nodi, ad un’infrastruttura globale capace di connettere più di un milione di utenti. La progressiva miniaturizzazione e la riduzione di costi di produzione dei dispositivi elettronici, permette, tuttora, l’estensione della rete a una nuova dimensione: gli oggetti intelligenti. In questi scenari dove le risorse di rete sono spesso proibitive o la mobilità dei nodi è una caratteristica comune, è necessario che sia garantita forte robustezza a transitori di connessione. Lo dimostra uno studio precedente riguardo ad un applicativo d'agricoltura di precisione denominato Agri-Eagle. In esso vengono confrontate due diverse implementazioni utilizzando il framework SMART M3 e MQTT. Il lavoro di tesi in esame ne estende le considerazioni ed esplora vari metodi per conferire robustezza ad applicazioni sviluppati su SMART-M3. Verrà studiata la funzionalità di Lastwill e Testament proprie di MQTT e se ne tenterà una trasposizione nel mondo semantico. Infine verrà modificato il meccanismo di sottoscrizione in modo da renderlo più robusto a cadute di connessione.
Resumo:
This thesis is about the smart home, a connected ambience that will help consumers to live a more environmentally sustainable life and will help vulnerable categories of consumers to live a more autonomous life, thanks to the pervasive use of the Internet of Things (IoT) technology. In particular, civil liability for the malfunctioning of the smart home is the filter through which the research is carried out. I analyse whether the actual legal liability rules are ready or not to adapt to this new connected environment, such as the IoT-powered smart home. Through careful mapping of the technical and legal state of the art, the thesis argues that the EU rules on product liability contained in the Product Liability Directive (PLD) will apply consistently to these objects. This holds true even if at the time of the drafting of the thesis, the proposal on the update of the PLD had not been published yet. Through the analysis of past PLD cases, new American products liability case-law on domestic IoT objects and the latest legal scholarship’s contributions and policy inputs it was possible to anticipate some of the contents of the newly published EU PLD Update proposal.
Resumo:
Nowadays, application domains such as smart cities, agriculture or intelligent transportation, require communication technologies that combine long transmission ranges and energy efficiency to fulfill a set of capabilities and constraints to rely on. In addition, in recent years, the interest in Unmanned Aerial Vehicles (UAVs) providing wireless connectivity in such scenarios is substantially increased thanks to their flexible deployment. The first chapters of this thesis deal with LoRaWAN and Narrowband-IoT (NB-IoT), which recent trends identify as the most promising Low Power Wide Area Networks technologies. While LoRaWAN is an open protocol that has gained a lot of interest thanks to its simplicity and energy efficiency, NB-IoT has been introduced from 3GPP as a radio access technology for massive machine-type communications inheriting legacy LTE characteristics. This thesis offers an overview of the two, comparing them in terms of selected performance indicators. In particular, LoRaWAN technology is assessed both via simulations and experiments, considering different network architectures and solutions to improve its performance (e.g., a new Adaptive Data Rate algorithm). NB-IoT is then introduced to identify which technology is more suitable depending on the application considered. The second part of the thesis introduces the use of UAVs as flying Base Stations, denoted as Unmanned Aerial Base Stations, (UABSs), which are considered as one of the key pillars of 6G to offer service for a number of applications. To this end, the performance of an NB-IoT network are assessed considering a UABS following predefined trajectories. Then, machine learning algorithms based on reinforcement learning and meta-learning are considered to optimize the trajectory as well as the radio resource management techniques the UABS may rely on in order to provide service considering both static (IoT sensors) and dynamic (vehicles) users. Finally, some experimental projects based on the technologies mentioned so far are presented.
Resumo:
The fourth industrial revolution is paving the way for Industrial Internet of Things applications where industrial assets (e.g., robotic arms, valves, pistons) are equipped with a large number of wireless devices (i.e., microcontroller boards that embed sensors and actuators) to enable a plethora of new applications, such as analytics, diagnostics, monitoring, as well as supervisory, and safety control use-cases. Nevertheless, current wireless technologies, such as Wi-Fi, Bluetooth, and even private 5G networks, cannot fulfill all the requirements set up by the Industry 4.0 paradigm, thus opening up new 6G-oriented research trends, such as the use of THz frequencies. In light of the above, this thesis provides (i) a broad overview of the main use-cases, requirements, and key enabling wireless technologies foreseen by the fourth industrial revolution, and (ii) proposes innovative contributions, both theoretical and empirical, to enhance the performance of current and future wireless technologies at different levels of the protocol stack. In particular, at the physical layer, signal processing techniques are being exploited to analyze two multiplexing schemes, namely Affine Frequency Division Multiplexing and Orthogonal Chirp Division Multiplexing, which seem promising for high-frequency wireless communications. At the medium access layer, three protocols for intra-machine communications are proposed, where one is based on LoRa at 2.4 GHz and the others work in the THz band. Different scheduling algorithms for private industrial 5G networks are compared, and two main proposals are described, i.e., a decentralized scheme that leverages machine learning techniques to better address aperiodic traffic patterns, and a centralized contention-based design that serves a federated learning industrial application. Results are provided in terms of numerical evaluations, simulation results, and real-world experiments. Several improvements over the state-of-the-art were obtained, and the description of up-and-running testbeds demonstrates the feasibility of some of the theoretical concepts when considering a real industry plant.
Resumo:
The need for data collection from sensors dispersed in the environment is an increasingly important problem in the sector of telecommunications. LoRaWAN is one of the most popular protocols for low-power wide-area networks (LPWAN) that is made to solve the aforementioned problem. The aim of this study is to test the behavior of the LoRaWAN protocol when the gateway that collects data is implemented on a flying platform or, more specifically, a drone. This will be pursued using performance data in terms of access to the channel of the sensor nodes connected to the flying gateway. The trajectory of the aircraft is precomputed using a given algorithm and sensor nodes’ clusterization. The expected results are as follows: simulate the LoraWAN system behavior including the trajectory of the drone and the deployment of nodes; compare and discuss the effectiveness of the LoRaWAN simulator by conducting on-field trials, where the trajectory design and the nodes’ deployment are the same.
Resumo:
La pandemia da COVID-19 ha cambiato le nostre vite obbligandoci a vivere mesi di lockdown, distanziamento sociale ed uso delle mascherine. Il distanziamento sociale e l'uso delle mascherine, anche dopo la prima fase della pandemia, sono state le contromisure principali in quanto permettevano di limitare i contagi permettendo comunque alla gente di uscire di casa. Tutte queste contromisure hanno creato gravi danni all'economia del paese e alla vita personale dei cittadini. Dalla fase iniziale della pandemia si è capito che per gestirla al meglio era necessario effettuare il numero maggiore di tamponi possibili per monitorare al meglio la diffusione del virus ma ciò non era possibile in quanto non esistevano le tecnologie necessarie per testare milioni di persone al giorno. Da questa necessità sono nati i sistemi di Contact Tracing, sistemi che permettono di monitorare in modo anonimo e protetto i contatti sociali delle persone così da capire se sono entrate in contatto con persone infette dal COVID-19 e solo in quel caso effettuare un tampone in modo tale da verificare se sono stati contagiati o meno. Tutti i sistemi di Contact tracing sviluppati ad oggi hanno mostrato problemi relativi alla protezione dei dati, alla scarsa ed inefficace comunicazione e non hanno ridotto al meglio il numero di tamponi effettuati per rilevare realmente coloro che erano stati contagiati avendo quindi uno scarso utilizzo soprattutto a causa della poca fiducia degli utenti riguardo l'utilizzo dei loro dati ed al fatto che dovevano autodichiararsi positivi. Con questa tesi presenterò una nuova tecnica per effettuare il Contact Tracing che combina l'utilizzo del Group Testing all'utilizzo dell'IoT e delle reti per tracciare i contatti tra gli utenti ed il virus chiamata Asynchronous Contact Tracing. Mostrerò come è stato progettato e sviluppato e mostrerò le performance grazie a degli esperimenti reali.
Resumo:
L’Internet of Things (IoT) è un termine utilizzato nel mondo della telecomunicazione che fa riferimento all’estensione di Internet al mondo degli oggetti, che acquisiscono una propria identità, venendo così definiti “intelligenti”. L’uomo in questo ambito avrà sempre meno incidenza sul campo poiché sono le macchine ad interagire tra loro scambiandosi informazioni. Gli ambiti applicativi che comprendono IoT sono innumerevoli ed eterogenei; pertanto, non esiste un'unica soluzione tecnologica che possa coprire qualsiasi scenario. Una delle tecnologie che si prestano bene a svolgere lavori in IoT sono le LoRaWAN. Un punto e una sfida essenziali nell'applicazione della tecnologia LoRaWAN è garantire la massima autonomia dei dispositivi ottenendo il più basso consumo di energia possibile e la ricerca di soluzioni di alimentazione efficienti. L'obiettivo in questo elaborato è quello di realizzare un sistema capace di trasmettere un flusso continuo di informazioni senza l'ausilio e il costante monitoraggio dell'uomo. Viene trattato come controllare dei sensori da remoto e come garantire una migliore autonomia dei dispositivi ottenendo un più basso consumo energetico.