945 resultados para International Pragmatics Conference
Resumo:
The Organisation for Economic Co-operation and Development investigated numeracy proficiency among adults of working age in 23 countries across the world. Finland had the highest mean numeracy proficiency for people in the 16 – 24 age group while Northern Ireland’s score was below the mean for all the countries. An international collaboration has been undertaken to investigate the prevalence of mathematics within the secondary education systems in Northern Ireland and Finland, to highlight particular issues associated with transition into university and consider whether aspects of the Finnish experience are applicable elsewhere. In both Northern Ireland and Finland, at age 16, about half of school students continue into upper secondary level following their compulsory education. The upper secondary curriculum in Northern Ireland involves a focus on three subjects while Finnish students study a very wide range of subjects with about two-thirds of the courses being compulsory. The number of compulsory courses in maths is proportionally large; this means that all upper secondary pupils in Finland (about 55% of the population) follow a curriculum which has a formal maths content of 8%, at the very minimum. In contrast, recent data have indicated that only about 13% of Northern Ireland school leavers studied mathematics in upper secondary school. The compulsory courses of the advanced maths syllabus in Finland are largely composed of pure maths with a small amount of statistics but no mechanics. They lack some topics (for example, in advanced calculus and numerical methods for integration) which are core in Northern Ireland. This is not surprising given the much broader curriculum within upper secondary education in Finland. In both countries, there is a wide variation in the mathematical skills of school leavers. However, given the prevalence of maths within upper secondary education in Finland, it is to be expected that young adults in that country demonstrate high numeracy proficiency.
Resumo:
The cycle of the academic year impacts on efforts to refine and improve major group design-build-test (DBT) projects since the time to run and evaluate projects is generally a full calendar year. By definition these major projects have a high degree of complexity since they act as the vehicle for the application of a range of technical knowledge and skills. There is also often an extensive list of desired learning outcomes which extends to include professional skills and attributes such as communication and team working. It is contended that student project definition and operation, like any other designed product, requires a number of iterations to achieve optimisation. The problem however is that if this cycle takes four or more years then by the time a project’s operational structure is fine tuned it is quite possible that the project theme is no longer relevant. The majority of the students will also inevitably experience a sub-optimal project experience over the 5 year development period. It would be much better if the ratio were flipped so that in 1 year an optimised project definition could be achieved which had sufficient longevity that it could run in the same efficient manner for 4 further years. An increased number of parallel investigators would also enable more varied and adventurous project concepts to be examined than a single institution could undertake alone in the same time frame.
This work-in-progress paper describes a parallel processing methodology for the accelerated definition of new student DBT project concepts. This methodology has been devised and implemented by a number of CDIO partner institutions in the UK & Ireland region. An agreed project theme was operated in parallel in one academic year with the objective of replacing a multi-year iterative cycle. Additionally the close collaboration and peer learning derived from the interaction between the coordinating academics facilitated the development of faculty teaching skills in line with CDIO standard 10.
Resumo:
There is increasing research and policy interest in the importance of attitudes to learning, learning orientations and learning dispositions (however they are labelled), not only because they influence traditional measures of school achievement but also because they facilitate how well children function at school, with implications for their future learning. This paper reports the findings on pupils’ learning dispositions and attitudes from two separate cohorts of pupils as they progress through upper primary school (Key Stage 2) in 50 schools in Northern Ireland. (These data are drawn from two different longitudinal studies and the data collection period predates the introduction of the new Northern Ireland Curriculum.) Approximately 1200 pupils completed seven scales from the Assessment of Learner-Centred Practices, ALCPs (McCombs and Lauer, 1997) at three time points, at the end of P5 (9 year olds), at the end of P6 (10 years olds) and at the end of P7 (11 year olds). ALCPs draws on an extensive research base that has identified cognitive and motivational dispositions and attitudes that are associated with a positive orientation to learning, and ultimately with positive progress in school (Alexander and Murphy, 1998). Although each scale can be considered separately, the seven scales cluster into two groups: self-efficacy, mastery orientation, active learning strategies and curiosity are all predicted to be pro-learning; and challenge avoidance, work avoidance, and – to a lesser extent – performance orientation, are predicted to be negatively associated with learning. The general trajectory in the children’s self-evaluations shows that they are becoming less pro-learning over time, with significant decreases in their self-ratings of active learning, curiosity, mastery orientation and self-efficacy. At the same time, there is some evidence that they work harder and put more effort into their work but this is not accompanied by maintaining their previous pro-learning motivations and strategies. The pattern is consistently more negative for boys than for girls. There are very few differences between the two cohorts indicating that the pattern is not confined to a specific cohort. These findings are challenging and will be interrogated with regard to two questions – are the changes related to the influence of the children’s school experiences per se or are they more related to developmental differences as children adopt more critical appraisals of their personal attributes and efforts as they get older? Whatever the reason, these learning dispositions and attitudes are important as they contribute significantly to school achievement even when the more traditional predictors like gender and ability are taken into account.
Resumo:
12. Vlajic, J., Bjelic. N., Vidovic, M., (2006), “Object oriented supply chain simulation in Flexsim”, Proceedings of The microCAD 2006 International Scientific Conference, Miskolc, Hungary, pp.197-203;
Resumo:
This paper examines the applicability of an immersive virtual reality (VR) system to the process of organizational learning in a manufacturing context. The work focuses on the extent to which realism has to be represented in a simulated product build scenario in order to give the user an effective learning experience for an assembly task. Current technologies allow the visualization and manipulation of objects in VR systems but physical behaviors such as contact between objects and the effects of gravity are not commonly represented in off the shelf simulation solutions and the computational power required to facilitate these functions remains a challenge. This work demonstrates how physical behaviors can be coded and represented through the development of more effective mechanisms for the computer aided design (CAD) and VR interface.
Resumo:
Previous studies on work instruction delivery for complex assembly tasks have shown that the mode and delivery method for the instructions in an engineering context can influence both build time and product quality. The benefits of digital, animated instructional formats when compared to static pictures and text only formats have already been demonstrated. Although pictograms have found applications for relatively straight forward operations and activities, their applicability to relatively complex assembly tasks has yet to be demonstrated. This study compares animated instructions and pictograms for the assembly of an aircraft panel. Based around a series of build experiments, the work records build time as well as the number of media references to measure and compare build efficiency. The number of build errors and the time required to correct them is also recorded. The experiments included five participants completing five builds over five consecutive days for each media type. Results showed that on average the total build time was 13.1% lower for the group using animated instructions. The benefit of animated instructions on build time was most prominent in the first three builds, by build four this benefit had disappeared. There were a similar number of instructional references for the two groups over the five builds but the pictogram users required a lot more references during build 1. There were more errors among the group using pictograms requiring more time for corrections during the build.
Resumo:
A study of a large number of published experiments on the behaviour of insects navigating by skylight has led to the design of a system for navigation in lightly clouded skies, suitable for a robot or drone. The design is based on the measurement of the directions in the sky at which the polarization angle, i.e. the angle χ between the polarized E-vector and the meridian, equals ±π/4 or ±(π/4 + π/3) or ±(π/4 - π/3). For any one of these three options, at any given elevation, there are usually 4 such directions and these directions can give the azimuth of the sun accurately in a few short steps, as an insect can do. A simulation shows that this compass is accurate as well as simple and well suited for an insect or robot. A major advantage of this design is that it is close to being invariant to variable cloud cover. Also if at least two of these 12 directions are observed the solar azimuth can still be found by a robot, and possibly by an insect.
Resumo:
This paper describes middleware-level support for agent mobility, targeted at hierarchically structured wireless sensor and actuator network applications. Agent mobility enables a dynamic deployment and adaptation of the application on top of the wireless network at runtime, while allowing the middleware to optimize the placement of agents, e.g., to reduce wireless network traffic, transparently to the application programmer. The paper presents the design of the mechanisms and protocols employed to instantiate agents on nodes and to move agents between nodes. It also gives an evaluation of a middleware prototype running on Imote2 nodes that communicate over ZigBee. The results show that our implementation is reasonably efficient and fast enough to support the envisioned functionality on top of a commodity multi-hop wireless technology. Our work is to a large extent platform-neutral, thus it can inform the design of other systems that adopt a hierarchical structuring of mobile components. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.
Resumo:
This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. It is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure), which extends previous complexity results. Furthermore, a Fully Polynomial Time Approximation Scheme for MAP in networks with bounded treewidth and bounded number of states per variable is developed. Approximation schemes were thought to be impossible, but here it is shown otherwise under the assumptions just mentioned, which are adopted in most applications.
Resumo:
This paper considers inference from multinomial data and addresses the problem of choosing the strength of the Dirichlet prior under a mean-squared error criterion. We compare the Maxi-mum Likelihood Estimator (MLE) and the most commonly used Bayesian estimators obtained by assuming a prior Dirichlet distribution with non-informative prior parameters, that is, the parameters of the Dirichlet are equal and altogether sum up to the so called strength of the prior. Under this criterion, MLE becomes more preferable than the Bayesian estimators at the increase of the number of categories k of the multinomial, because non-informative Bayesian estimators induce a region where they are dominant that quickly shrinks with the increase of k. This can be avoided if the strength of the prior is not kept constant but decreased with the number of categories. We argue that the strength should decrease at least k times faster than usual estimators do.