938 resultados para Interconnected electric utility systems Queensland
Resumo:
The physical implementation of quantum information processing is one of the major challenges of current research. In the last few years, several theoretical proposals and experimental demonstrations on a small number of qubits have been carried out, but a quantum computing architecture that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is still lacking. In particular, a major ultimate objective is the construction of quantum simulators, yielding massively increased computational power in simulating quantum systems. Here we investigate promising routes towards the actual realization of a quantum computer, based on spin systems. The first one employs molecular nanomagnets with a doublet ground state to encode each qubit and exploits the wide chemical tunability of these systems to obtain the proper topology of inter-qubit interactions. Indeed, recent advances in coordination chemistry allow us to arrange these qubits in chains, with tailored interactions mediated by magnetic linkers. These act as switches of the effective qubit-qubit coupling, thus enabling the implementation of one- and two-qubit gates. Molecular qubits can be controlled either by uniform magnetic pulses, either by local electric fields. We introduce here two different schemes for quantum information processing with either global or local control of the inter-qubit interaction and demonstrate the high performance of these platforms by simulating the system time evolution with state-of-the-art parameters. The second architecture we propose is based on a hybrid spin-photon qubit encoding, which exploits the best characteristic of photons, whose mobility is exploited to efficiently establish long-range entanglement, and spin systems, which ensure long coherence times. The setup consists of spin ensembles coherently coupled to single photons within superconducting coplanar waveguide resonators. The tunability of the resonators frequency is exploited as the only manipulation tool to implement a universal set of quantum gates, by bringing the photons into/out of resonance with the spin transition. The time evolution of the system subject to the pulse sequence used to implement complex quantum algorithms has been simulated by numerically integrating the master equation for the system density matrix, thus including the harmful effects of decoherence. Finally a scheme to overcome the leakage of information due to inhomogeneous broadening of the spin ensemble is pointed out. Both the proposed setups are based on state-of-the-art technological achievements. By extensive numerical experiments we show that their performance is remarkably good, even for the implementation of long sequences of gates used to simulate interesting physical models. Therefore, the here examined systems are really promising buildingblocks of future scalable architectures and can be used for proof-of-principle experiments of quantum information processing and quantum simulation.
Resumo:
In May 2006, the Ministers of Health of all the countries on the African continent, at a special session of the African Union, undertook to institutionalise efficiency monitoring within their respective national health information management systems. The specific objectives of this study were: (i) to assess the technical efficiency of National Health Systems (NHSs) of African countries for measuring male and female life expectancies, and (ii) to assess changes in health productivity over time with a view to analysing changes in efficiency and changes in technology. The analysis was based on a five-year panel data (1999-2003) from all the 53 countries of continental Africa. Data Envelopment Analysis (DEA) - a non-parametric linear programming approach - was employed to assess the technical efficiency. Malmquist Total Factor Productivity (MTFP) was used to analyse efficiency and productivity change over time among the 53 countries' national health systems. The data consisted of two outputs (male and female life expectancies) and two inputs (per capital total health expenditure and adult literacy). The DEA revealed that 49 (92.5%) countries' NHSs were run inefficiently in 1999 and 2000; 50 (94.3%), 48 (90.6%) and 47 (88.7%) operated inefficiently in 2001, 2002, and 2003 respectively. All the 53 countries' national health systems registered improvements in total factor productivity attributable mainly to technical progress. Fifty-two countries did not experience any change in scale efficiency, while thirty (56.6%) countries' national health systems had a Pure Efficiency Change (PEFFCH) index of less than one, signifying that those countries' NHSs pure efficiency contributed negatively to productivity change. All the 53 countries' national health systems registered improvements in total factor productivity, attributable mainly to technical progress. Over half of the countries' national health systems had a pure efficiency index of less than one, signifying that those countries' NHSs pure efficiency contributed negatively to productivity change. African countries may need to critically evaluate the utility of institutionalising Malmquist TFP type of analyses to monitor changes in health systems economic efficiency and productivity over time. African national health systems, per capita total health expenditure, technical efficiency, scale efficiency, Malmquist indices of productivity change, DEA