922 resultados para Interaction of wave and structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a large and long-lived species with high economic value, restricted spawning areas and short spawning periods, the Atlantic bluefin tuna (BFT; Thunnus thynnus) is particularly susceptible to over-exploitation. Although BFT have been targeted by fisheries in the Mediterranean Sea for thousands of years, it has only been in these last decades that the exploitation rate has reached far beyond sustainable levels. An understanding of the population structure, spatial dynamics, exploitation rates and the environmental variables that affect BFT is crucial for the conservation of the species. The aims of this PhD project were 1) to assess the accuracy of larval identification methods, 2) determine the genetic structure of modern BFT populations, 3) assess the self-recruitment rate in the Gulf of Mexico and Mediterranean spawning areas, 4) estimate the immigration rate of BFT to feeding aggregations from the various spawning areas, and 5) develop tools capable of investigating the temporal stability of population structuring in the Mediterranean Sea. Several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials are reviewed. Barcoding of scombrid larvae revealed important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology-based methods. Using a Genotyping-by-Sequencing a panel of 95 SNPs was developed and used to characterize the population structuring of BFT and composition of adult feeding aggregations. Using novel molecular techniques, DNA was extracted from bluefin tuna vertebrae excavated from late iron age, ancient roman settlements Byzantine-era Constantinople and a 20th century collection. A second panel of 96 SNPs was developed to genotype historical and modern samples in order to elucidate changes in population structuring and allele frequencies of loci associated with selective traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the origins of the mechanical properties and its correlation withrnthe microstructure of gel systems is of great scientific and industrial interest. Inrngeneral, colloidal gels can be classified into chemical and physical gels, accordingrnto the life time of the network bonds. The characteristic di↵erences in gelationrndynamics can be observed with rheological measurements.rnAs a model system, a mixture of sodium silicate and low concentration sulfuric acidrnwas used. Nano-sized silica particles grow and aggregate to a system-spanning gelrnnetwork. The influence of the finite solubility of silica at high pH on the gelationrnwas studied with classical and piezo rheometer. The storage modulus of therngel grew logarithmically with time with two distinct growth laws. A relaxationrnat low frequency was observed in the frequency dependent measurements. I attributernthese two behaviors as a sign of structural rearrangements due to the finiternsolubility of silica at high pH. The reaction equilibrium between formation andrndissolution of bonds leads to a finite life time of the bonds and behavior similar tornphysical gel. The frequency dependence was more pronounced for lower water concentrations,rnhigher temperatures and shorter reaction times. With two relaxationrnmodels, I deduced characteristic relaxation times from the experimental data. Besidesrnrheology, the evolution of silica gels at high pH on di↵erent length scales wasrnstudied by NMR and dynamic light scattering. The results revealed that the primaryrnparticles existed already in sodium silicate and aggregated after the mixingrnof reactants due to a chemical reaction. Throughout the aggregation process thernsystem was in its chemical reaction equilibrium. Applying large oscillatory shearrnstrain to the gel allowed for modifying the gel modulus. The e↵ect of shear andrnshear history on the rheological properties of the gel were investigated. The storagernmodulus of the final gel increased with increasing strain. This behavior can be explained with (i) shear-induced aggregate compaction and (ii) combination ofrnbreakage and new formation of bonds.rnIn comparison with the physical gel-like behavior of the silica gel at high pH, typicalrnchemical gel features were exhibited by other gels formed from various chemicalrnreactions. Influences of the chemical structure modification on the gelation wererninvestigated with the piezo-rheometer. The external stimuli can be applied to tunernthe mechanical properties of the gel systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit fokussierten wir uns auf drei verschiedene Aspekte der Leishmanien-Infektion. Wir charakterisierten den Prozess des Zelltods „Apoptose“ bei Parasiten (1), untersuchten die Eignung von Makrophagen und dendritischen Zellen als Wirtszelle für die Entwicklung der Parasiten (2) und analysierten die Konsequenzen der Infektion für die Entstehung einer adaptiven Immunantwort im humanen System. Von zentraler Bedeutung für dieses Projekt war die Hypothese, dass apoptotische Leishmanien den Autophagie-Mechanismus ihrer Wirtszellen ausnutzen, um eine T-Zell-vermittelte Abtötung der Parasiten zu vermindern.rnWir definierten eine apoptotische Leishmanien-Population, welche durch eine rundliche Morphologie und die Expression von Phosphatidylserin auf der Parasitenoberfläche charakterisiert war. Die apoptotischen Parasiten befanden sich zudem in der SubG1-Phase und wiesen weniger und fragmentierte DNA auf, welche durch TUNEL-Assay nachgewiesen werden konnte. Bei der Interaktion der Parasiten mit humanen Makrophagen und dendritischen Zellen zeigte sich, dass die anti-inflammatorischen Makrophagen anfälliger für Infektionen waren als die pro-inflammatorischen Makrophagen oder die dendritischen Zellen. Interessanterweise wurde in den dendritischen Zellen jedoch die effektivste Umwandlung zur krankheitsauslösenden, amastigoten Lebensform beobachtet. Da sowohl Makrophagen als auch dendritische Zellen zu den antigenpräsentierenden Zellen gehören, könnte dies zur Aktivierung der T-Zellen des adaptiven Immunsystems führen. Tatsächlich konnte während der Leishmanien-Infektion die Proliferation von T-Zellen beobachtet werden. Dabei stellten wir fest, dass es sich bei den proliferierenden T-Zellen um CD3+CD4+ T-Zellen handelte, welche sich überraschenderweise als Leishmanien-spezifische CD45RO+ T-Gedächtniszellen herausstellten. Dies war unerwartet, da ein vorheriger Kontakt der Spender mit Leishmanien als unwahrscheinlich gilt. In Gegenwart von apoptotischen Parasiten konnte eine signifikant schwächere T-Zell-Proliferation in Makrophagen, jedoch nicht in dendritischen Zellen beobachtet werden. Da sich die T-Zell-Proliferation negativ auf das Überleben der Parasiten auswirkt, konnten die niedrigsten Überlebensraten in dendritischen Zellen vorgefunden werden. Innerhalb der Zellen befanden sich die Parasiten in beiden Zelltypen im Phagosom, welches allerdings nur in Makrophagen den Autophagie-Marker LC3 aufwies. Chemische Induktion von Autophagie führte, ebenso wie die Anwesenheit von apoptotischen Parasiten, zu einer stark reduzierten T-Zell-Proliferation und dementsprechend zu einem höheren Überleben der Parasiten.rnZusammenfassend lässt sich aus unseren Daten schließen, dass Apoptose in Einzellern vorkommt. Während der Infektion können sowohl Makrophagen, als auch dendritische Zellen mit Leishmanien infiziert und das adaptive Immunsystem aktivert werden. Die eingeleitete T-Zell-Proliferation nach Infektion von Makrophagen ist in Gegenwart von apoptotischen Parasiten reduziert, weshalb sie im Vergleich zu dendritischen Zellen die geeigneteren Wirtszellen für Leishmanien darstellen. Dafür missbrauchen die Parasiten den Autophagie-Mechanismus der Makrophagen als Fluchtstrategie um das adaptive Immunsystem zu umgehen und somit das Überleben der Gesamtpopulation zu sichern. Diese Ergebnisse erklären den Vorteil von Apoptose in Einzellern und verdeutlichen, dass der Autophagie-Mechanismus als potentielles therapeutisches Ziel für die Behandlung von Leishmaniose dienen kann.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5 restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5 splice variant TRIM5 in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactococcus lactis IL1403 is a lactic acid bacterium that is used widely for food fermentation. Copper homeostasis in this organism chiefly involves copper secretion by the CopA copper ATPase. This enzyme is under the control of the CopR transcriptional regulator. CopR not only controls its own expression and that of CopA, but also that of an additional three operons and two monocistronic genes. One of the genes under the control of CopR, yahD, encodes an α/β-hydrolase. YahD expression was induced by copper and cadmium, but not by other metals or oxidative or nitrosative stress. The three-dimensional structure of YahD was determined by X-ray crystallography to a resolution of 1.88 Å. The protein was found to adopt an α/β-hydrolase fold with the characteristic Ser-His-Asp catalytic triad. Functional testing of YahD for a wide range of substrates for esterases, lipases, epoxide hydrolases, phospholipases, amidases and proteases was, however, unsuccessful. A copper-inducible serine hydrolase has not been described previously and YahD appears to be a new functional member of this enzyme family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution microscopy techniques provide a plethora of information on biological structures from the cellular level down to the molecular level. In this review, we present the unique capabilities of transmission electron and atomic force microscopy to assess the structure, oligomeric state, function and dynamics of channel and transport proteins in their native environment, the lipid bilayer. Most importantly, membrane proteins can be visualized in the frozen-hydrated state and in buffer solution by cryo-transmission electron and atomic force microscopy, respectively. We also illustrate the potential of the scintillation proximity assay to study substrate binding of detergent-solubilized transporters prior to crystallization and structural characterization.