966 resultados para Intensity of grazing
Resumo:
The general and synchronous spectra of phospholipase A(2) (PLA(2)) isolated from Chinese agkistrodon blomhoffii Ussurensis snake venom were studied. The chromophores of PLA(2) were mainly contributed by tyrosine and tryptophane residues when the intervals between the excitation wavelength and the emssion waveleagth (Delta lambda) were 20nm and 75nm, respectively. The pH of buffers could change the fluorescence intensities of PLA(2) by changing the charge distribution of its amino acid chain. Ca2+ can not only increase the emission fluorescence intensity of PLA(2) but also improve the reaction rate of PLA(2) with its corresponding substrate DPPC.
Resumo:
Matrix effects arising from ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine in inductively coupled plasma mass spectrometry have been studied. Addition of ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine into solution has an enhancement effect on the signal intensity of analyte with ionization potential between 9 and 11 eV. The ethylenediamine and triethanolamine have higher enhancement effect on the signal intensity of Hg than that of ethanol, propanol, glycerol and acetic acid. Addition of ethylenediamine and triethanolamine into solution has a suppression effect on the signal intensity of Ph and Sr. The mechanism of the enhancement or suppression was investigated. The signal enhancement of Hg in the presence of ethylenediamine and triethanolamine is not caused by improved degree of ionization of Hg and nebulization efficiency. The suppression effects of Ph and Sr in the presence of ethylenediamine and triethanolamine are due to decrease of atomization efficiency of these elements. A method for the determination of Hg in the biological standard samples Ly ICP-MS was developed.
Resumo:
Eu(III)-octa-4-(tetrahydrofurfuroxy) phthalocyanine (EuPc2') was synthesied and characterized by elementary analysis, IR, MS, UV-vis spectra. EuPc2' has good film-forming ability from determination of isotherm of pi-A. The complex LB film was formed by depositing of EuPc2' on a quartz slide with the LB techniques of the Z-type, The luminescent properties of pure and doped LS films were determined. The results showed that pure films have good luminescent properties, the thicker the LB films, the stronger the fluorescent intensity. The films doped with o-phenanthroline (abbreviated as phen) made the relative intensity of fluorescent emission behavior enhance in comparison to that of pure LB film, But the amount of phen may be not too much. Our results showed that EuPc2':phen = 1: 10 (molar ratio) has the best fluorescent behavior. The electronic spectroscopic characterization of the LB films is also given.
Resumo:
The encapsulation of a rare earth (RE) complex Eu(DBM)(3)phen in modified S1-MCM-41 with 3-aminopropyltriethoxysilane is reported for the first time. The luminescence intensity of the RE complex in the modified Si-MCM-41 is about 9 times as strong as in unmodified Si-MCM-41 and the luminescence of the RE complex in the modified SI-MCM-41 has good color purity.
Resumo:
The microcavity is sandwiched between a quarterwavelength distributed Bragg reflector(DBR) and a metal Ag reflective mirror. A single layer of a Tris(8-quinolinolato)aluminum (Alq) film was used as the light-emitting layer. The photoluminescent properties of the optical microcavity and that of the Alq film were studied at the same excitation condition. Compared with the Alq film,the significantly narrowed spectral emission linewidth from 90 nm to 10 nm was observed, the PL emission intensity of the microcavity at the resonant mode is enhanced by the order of 1. The spectral narrowing and intensity enhancement of the microcavity is attributed to the microcavity effect.
Resumo:
The high-resolution emission spectra of KMgF3 : Eu and KMgF3 : Eu-X(X = Ce, Cr, Gd, Cu) single crystals were measured at 300 and 77 K. The vibronic side bands of Eu2+ were characterized and an assignment of the normal mode frequencies to particular vibrations has been made. The correlation between the vibronic frequencies of Eu2+ and the site substitution of other co-dopcd ions was first found. The relationship between vibronic intensity of Eu2+ and other doped ions concentration showed that Cr3+, Gd3+ ions competed K+ sites with Eu2+ ions. Ce3+ and Eu3+ occurred the electron transference. The introduction of Cu+ made for Eu2+ substuting for K+ sites.
Resumo:
Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of physical ageing on the crazing of polyphenylquinoxaline (PPQ-E) films were studied. The DSC endothermic peak at the glass transition region of the samples was interpreted in terms of the cohesional entanglement theory. The free volume cavity size and free volume intensity of the samples were characterized by positron annihilation life spectroscopy. The difference in free volume cavity size and free volume intensity between two samples reflect the strength and density of cohensional entanglement point. The critical strain for craze initiation and craze stability depended on physical ageing of the samples. The relationships between physical ageing and crazing were interpreted initially.
Resumo:
When CaS:Sm3+, Eu2+ is excited at 476.5 nm (Ar+), the emission spectra taken at room temperature and at 77 K are different, indicating that there are two competitive energy transfer processes-Sm3+ --> Eu2+ and Eu2+ --> Sm3+ with phonon participation. So, the luminescence intensity of Sm3+ increases first, and then decreases as the concentration of Eu2+ is increasing. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Nanocrystalline Yb2O3 of various particle sizes was prepared using sol-gel method. XRD analysis shows that the prepared nanocrystalline Yb2O3 is cubic in structure with space group Ia3. TEM photographs indicate that Yb2O3 nanoparticles are basically spherical in shape. Calculation of crystallite size indicates that the average crystallite size of Yb2O3 increases with increasing calcination temperature, but the average crystal lattice distortion rate decreases with increasing calcination temperature and crystallite size. This result shows that the smaller the crystallite size, the bigger the crystal lattice distortion, and the worse crystal growth. Solubility test of Yb2O3 in nitric acid shows that the surface activity of Yb2O3 increases with decreasing crystallite size. Fourier Transform Infrared Spectrometer (FTIR) spectra reveal that nanocrystalline Yb2O3 has higher surface activity; than that of ordinary Yb2O3. Absorbance intensity of Yb-O bond of nanocrystalline Yb2O3 is weaker than that of ordinary Yb2O3, and the absorbance of Yb-O bond of nanocrystalline Yb2O3 is small blue-shifted.
Resumo:
Nanosized ZnS doped with different concentrations of Eu3+ were prepared and analyzed by x-ray diffraction technique. The experimental results show that ZnS belongs to the cubic structure. From the photoluminescence (PL) emission spectra, it can be seen that the ratio of the emission intensity of Eu3+ 616 nm to that at 590 nm increases as the increasing of Eu3+. This phenomenon reveals that the site symmetry of Eu3+ reduces as the increasing of Eu3+.
Resumo:
The sodium polyaluminates were synthesized by a high temperature solid state method and the luminescence of Eu2+ in the sodium polyaluminates was studied. The results show that the structure of the system Na1+xMgxAl11-xO17 from x=0.1 to x=1.0 belongs to Na-beta-alumina and the structure of the system Na1.67-2xBaxMg0.67Al10.33O17 changes at about x equal to 0.30, when x is smaller than 0.30 the system forms the solid solution structure of Na-beta-alumina, when x is larger than 0.30 the system becomes the ordered structure of Ba-beta-alumina, correspondingly the emission peak position and the relative emission intensity of Eu2+ change with the changes of composition and structure of the system. There exist two kinds of the luminescent centers of high and low energies of Eu2+ in the matrix of Na-beta-alumina structure. New phosphor with Ba-beta-alumina structure, Na0.67Ba0.50Mg0.67Al10.33O17:Eu2+, was obtained.
Resumo:
Aniline pentamer and hexamer in the leucoemeraldine oxidation state were synthesized through a novel method. The method was accomplished by the reaction of parent aniline tetramer in the pernigraniline oxidation state with diphenylamine and N-phenyl-1,4-phenylenediamine in the leucoemeraldine oxidation state respectively. The oligomers in the leucoemeraldine oxidation state were characterized by IR, NMR, elemental analysis and MALDI-MS. Aniline pentamer and hexamer in the emeraldine oxidation state were synthesized by the oxidation of Ag2O in DMF. It was found that some fragmentation occurred when the pentamer and hexamer were oxidized by (NH4)(2)S2O8 and FeCl3. 6H(2)O. The pentamer and hexamer in the emeraldine oxidation state was studied by UV/Vis spectra. The relative intensity of exciton peak for pentaaniline showed a little increase compared with that of hexaaniline.
Resumo:
In this paper, we report the optical properties of SnO2 semiconductor nanoparticles in hydrosols and those of SnO2 semiconductor nanoparticles in organosols in which the surfaces of the particles are coated by a layer of organic surfactant molecules. The photoluminescence spectra of SnO2 semiconductor nanoparticles in the hydrosols and organosols in different conditions were measured and discussed. We conclude that the surface structure of the SnO2 semiconductor nanoparticles affects their optical properties strongly. The oxygen deficiencies on the surface of SnO2 semiconductor nanoparticles play an important role in the optical properties. The surface modification of the particles effectively removes the surface defects of the particles and enhances the intensity of luminescence.
Resumo:
Because of the extremely sensitivity to the local environment of the D-5(0) --> F-7(2) transition of Eu3+ ion, the fluorescence of Eu3+ ions was Studied by introducing Eu3+ ions to TiO2 gel by the sol-gel method, from which the structural changes of TiO2 gel were characterized. The results showed that the intensity of D-5(0) --> F-7(2) transition increased with the increasement of heat treatment temperature, which indicated the evaporation of molecular water and the completeness of the condensation reaction. Because of the quenching of the fluorescence induced by the cluster of Eu3+ ions, the addition of Al3+ ions greatly enhanced the emission intensity of Eu3+ ion.