959 resultados para Insulin signaling
Resumo:
Klebsiella pneumoniae is etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group have shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-on-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening, that of metabolism and transport (32% of the mutants), and of enveloperelated genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression which in turn underlined the NF- κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS Opolysaccharide and T2SS mutants-induced responses were dependent on TLR2-TLR4- MyD88 activation suggested that LPS Opolysaccharide and PulA perturbed TLRdependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS Opolysaccharide and PulA T2SS could be new targets for designing new antimicrobials. Increasing TLR-governed defence responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Resumo:
It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.
Resumo:
OBJECTIVE: Ovarian cancer is the most lethal gynecological malignancy that affects women. Recent data suggests that the disease may originate in the fallopian fimbriae; however, the anatomical origin of ovarian carcinogenesis remains unclear. This is largely driven by our lack of knowledge regarding the structure and function of normal fimbriae and the relative paucity of models that accurately recapitulate the in vivo fallopian tube. Therefore, a human three-dimensional (3D) culture system was developed to examine the role of the fallopian fimbriae in serous tumorigenesis.
METHODS: Alginate matrix was utilized to support human fallopian fimbriae ex vivo. Fimbriae were cultured with factors hypothesized to contribute to carcinogenesis, namely; H2O2 (1mM) a mimetic of oxidative stress, insulin (5μg/ml) to stimulate glycolysis, and estradiol (E2, 10nM) which peaks before ovulation. Cultures were evaluated for changes in proliferation and p53 expression, criteria utilized to identify potential precursor lesions. Further, secretory factors were assessed after treatment with E2 to identify if steroid signaling induces a pro-tumorigenic microenvironment.
RESULTS: 3D fimbriae cultures maintained normal tissue architecture up to 7days, retaining both epithelial subtypes. Treatment of cultures with H2O2 or insulin significantly induced proliferation. However, p53 stabilization was unaffected by any particular treatment, although it was induced by ex vivo culturing. Moreover, E2-alone treatment significantly induced its canonical target PR and expression of IL8, a factor linked to poor outcome.
CONCLUSIONS: 3D alginate cultures of human fallopian fimbriae provide an important microphysiological model, which can be further utilized to investigate serous tumorigenesis originating from the fallopian tube.
Resumo:
Cervical cancer is a multi-stage disease caused by human papillomaviruses (HPV) infection of cervical epithelial cells, but the mechanisms regulating disease progression are not clearly defined. Using 3-dimensional organotypic cultures, we demonstrate that HPV16 E6 and E7 proteins alter the secretome of primary human keratinocytes resulting in local epithelial invasion. Mechanistically, absence of the IGF-binding protein 2 (IGFBP2) caused increases in IGFI/II signalling and through crosstalk with KGF/FGFR2b/AKT, cell invasion. Repression of IGFBP2 is mediated by histone deacetylation at the IGFBP2 promoter and was reversed by treatment with histone deacetylase (HDAC) inhibitors. Our in vitro findings were confirmed in 50 invasive cancers and 79 cervical intra-epithelial neoplastic lesions caused by HPV16 infection, where IGFBP2 levels were reduced with increasing disease severity. In summary, the loss of IGFBP2 is associated with progression of premalignant disease, and sensitises cells to pro-invasive IGF signalling, and together with stromal derived factors promotes epithelial invasion.
Resumo:
The introduction of microarray technology to the scientific and medical communities has fundamentally altered the way in which we now address basic biomedical questions. Microarrays technology facilitates a more complete and inclusive experimental approach where alterations in the transcript level of entire genomes can be simultaneously assayed in response to a variety of stimuli. Conceptually different approaches to the development of microarray technology have resulted in the generation of two different array formats: oligonucleotide arrays and cDNA arrays. The application of microarray and related technologies to identify specific targets of defined genes that have clearly been implicated in cancer progression requires a specific experimental approach. The objective of tiffs approach is to define changes in transcriptional profile that occur in response to modulating the expression level of the gene to be studied. The resulting altered expression profile can then be viewed as a blueprint by which that gene effects its cellular function. We have used oligonucleotide array-based expression profiling in collaboration with Affymetrix to identify downstream transcriptional targets of the BRCA1 tumor-suppressor gene as a means of defining its function. BRCA1 has been implicated in at least three functional pathways, namely, mediating the cellular response to DNA damage, as a cell cycle checkpoint protein and in the regulation of transcription. The physiological significance of these properties and their implications for the function of BRCA1 as a tumor-suppressor gene remain to be defined.
Resumo:
Voltage-dependent calcium channels (VDCCs) are key elements in epileptogenesis. There are several binding-sites linked to calmodulin (CaM) and several potential CaM-dependent protein kinase II (CaMKII)-mediated phosphorylation sites in CaV1.2. The tremor rat model (TRM) exhibits absence‑like seizures from 8 weeks of age. The present study was performed to detect changes in the Ca2+/CaV1.2/CaM/CaMKII pathway in TRMs and in cultured hippocampal neurons exposed to Mg2+‑free solution. The expression levels of CaV1.2, CaM and phosphorylated CaMKII (p‑CaMKII; Thr‑286) in these two models were examined using immunofluorescence and western blotting. Compared with Wistar rats, the expression levels of CaV1.2 and CaM were increased, and the expression of p‑CaMKII was decreased in the TRM hippocampus. However, the expression of the targeted proteins was reversed in the TRM temporal cortex. A significant increase in the expression of CaM and decrease in the expression of CaV1.2 were observed in the TRM cerebellum. In the cultured neuron model, p‑CaMKII and CaV1.2 were markedly decreased. In addition, neurons exhibiting co‑localized expression of CaV1.2 and CaM immunoreactivities were detected. Furthermore, intracellular calcium concentrations were increased in these two models. For the first time, o the best of our knowledge, the data of the present study suggested that abnormal alterations in the Ca2+/CaV1.2/CaM/CaMKII pathway may be involved in epileptogenesis and in the phenotypes of TRMs and cultured hippocampal neurons exposed to Mg2+‑free solution.
Resumo:
CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of β1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the β1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with β1-integrin and repressed HA-induced, CD44-mediated activation of β1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and β1-integrin-dependent mechanisms. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche.
Resumo:
Diet-induced obesity can induce low-level inflammation and insulin resistance. Interleukin-1β (IL-1β) is one of the key proinflammatory cytokines that contributes to the generation of insulin resistance and diabetes, but the mechanisms that regulate obesity-driven inflammation are ill defined. Here we found reduced expression of the E3 ubiquitin ligase Pellino3 in human abdominal adipose tissue from obese subjects and in adipose tissue of mice fed a high-fat diet and showing signs of insulin resistance. Pellino3-deficient mice demonstrated exacerbated high-fat-diet-induced inflammation, IL-1β expression, and insulin resistance. Mechanistically, Pellino3 negatively regulated TNF receptor associated 6 (TRAF6)-mediated ubiquitination and stabilization of hypoxia-inducible factor 1α (HIF1α), resulting in reduced HIF1α-induced expression of IL-1β. Our studies identify a regulatory mechanism controlling diet-induced insulin resistance by highlighting a critical role for Pellino3 in regulating IL-1β expression with implications for diseases like type 2 diabetes.
Resumo:
Mycosis fungoides (MF) is the most frequent type of cutaneous T-cell lymphoma, whose diagnosis and study is hampered by its morphologic similarity to inflammatory dermatoses (ID) and the low proportion of tumoral cells, which often account for only 5% to 10% of the total tissue cells. cDNA microarray studies using the CNIO OncoChip of 29 MF and 11 ID cases revealed a signature of 27 genes implicated in the tumorigenesis of MF, including tumor necrosis factor receptor (TNFR)-dependent apoptosis regulators, STAT4, CD40L, and other oncogenes and apoptosis inhibitors. Subsequently a 6-gene prediction model was constructed that is capable of distinguishing MF and ID cases with unprecedented accuracy. This model correctly predicted the class of 97% of cases in a blind test validation using 24 MF patients with low clinical stages. Unsupervised hierarchic clustering has revealed 2 major subclasses of MF, one of which tends to include more aggressive-type MF cases including tumoral MF forms. Furthermore, signatures associated with abnormal immunophenotype (11 genes) and tumor stage disease (5 genes) were identified.
Resumo:
The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.
Resumo:
BACKGROUND: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function.
OBJECTIVE: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food-style meal.
METHODS: Adults with T2D [n = 18; age (means ± SEs): 56 ± 3 y; BMI (in kg/m(2)): 35.3 ± 2.0; 14 women; 4 men) were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; <0.1 mg flavanols) with a high-fat fast-food-style breakfast [766 kcal, 50 g fat (59% energy)] in a crossover trial. After an overnight fast (10-12 h), participants consumed the breakfast with cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment.
RESULTS: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P < 0.05) and specifically at 4 h but had no overall effects on insulin resistance (except at 4 h, P < 0.05), systolic or diastolic blood pressure, or small artery elasticity. However, large artery elasticity was overall lower after cocoa vs. placebo (Δ: -1.6 ± 0.7 mL/mm Hg; P < 0.05), with the difference significant only at 2 h.
CONCLUSION: Acute cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food-style meal challenge. Although HDL cholesterol and insulin remained higher throughout the 6-h postprandial period, an overall decrease in large artery elasticity was found after cocoa consumption. This trial was registered at clinicaltrials.gov as NCT01886989.
Resumo:
The endosomal system provides a route whereby nutrients, viruses, and receptors are internalized. During the course of endocytosis, activated receptors can accumulate within endosomal structures and certain signal-transducing molecules can be recruited to endosomal membranes. In the context of signaling and cancer, they provide platforms within the cell from which signals can be potentiated or attenuated. Regulation of the duration of receptor signaling is a pivotal means of refining growth responses in cells. In cancers, this is often considered in terms of mutations that affect receptor tyrosine kinases and maintain them in hyperactivated states of dimerization and/or phosphorylation. However, disruption to the regulatory control exerted by the assembly of protein complexes within the endosomal network can also contribute to disease among which oncogenesis is characterized in part by dysregulated growth, enhanced cell survival, and changes in the expression of markers of differentiation. In this chapter, we will discuss the role of proteins that regulate in endocytosis as tumor suppressors or oncogenes and how changing the fate of internalized receptors and concomitant endosomal signaling can contribute to cancer.
Resumo:
Clear cell renal cell carcinoma (ccRCC), a tubular epithelial cell (TEC) malignancy, frequently secretes tumor necrosis factor (TNF). TNF signals via two distinct receptors (TNFRs). TNFR1, expressed in normal kidney primarily on endothelial cells, activates apoptotic signaling kinase 1 and nuclear factor-kappaB (NF-kappaB) and induces cell death, whereas TNFR2, inducibly expressed on endothelial cells and on TECs by injury, activates endothelial/epithelial tyrosine kinase (Etk), which trans-activates vascular endothelial growth factor receptor 2 (VEGFR2) to promote cell proliferation. We investigated TNFR expression in clinical samples and function in short-term organ cultures of ccRCC tissue treated with wild-type TNF or specific muteins selective for TNFR1 (R1-TNF) or TNFR2 (R2-TNF). There is a significant increase in TNFR2 but not TNFR1 expression on malignant TECs that correlates with increasing malignant grade. In ccRCC organ cultures, R1-TNF increases TNFR1, activates apoptotic signaling kinase and NF-kappaB, and promotes apoptosis in malignant TECs. R2-TNF increases TNFR2, activates NF-kappaB, Etk, and VEGFR2 and increases entry into the cell cycle. Wild-type TNF induces both sets of responses. R2-TNF actions are blocked by pretreatment with a VEGFR2 kinase inhibitor. We conclude that TNF, acting through TNFR2, is an autocrine growth factor for ccRCC acting via Etk-VEGFR2 cross-talk, insights that may provide a more effective therapeutic approach to this disease.