821 resultados para Insect body size
Resumo:
Insect gustatory and odorant receptors (GRs and ORs) form a superfamily of novel transmembrane proteins, which are expressed in chemosensory neurons that detect environmental stimuli. Here we identify homologues of GRs (Gustatory receptor-like (Grl) genes) in genomes across Protostomia, Deuterostomia and non-Bilateria. Surprisingly, two Grls in the cnidarian Nematostella vectensis, NvecGrl1 and NvecGrl2, are expressed early in development, in the blastula and gastrula, but not at later stages when a putative chemosensory organ forms. NvecGrl1 transcripts are detected around the aboral pole, considered the equivalent to the head-forming region of Bilateria. Morpholino-mediated knockdown of NvecGrl1 causes developmental patterning defects of this region, leading to animals lacking the apical sensory organ. A deuterostome Grl from the sea urchin Strongylocentrotus purpuratus displays similar patterns of developmental expression. These results reveal an early evolutionary origin of the insect chemosensory receptor family and raise the possibility that their ancestral role was in embryonic development.
Resumo:
Critical size at which metamorphosis is initiated represents an important checkpoint in insect development. Here, we use experimental evolution in Drosophila melanogaster to test the long-standing hypothesis that larval malnutrition should favour a smaller critical size. We report that six fly populations subject to 112 generations of laboratory natural selection on an extremely poor larval food evolved an 18% smaller critical size (compared to six unselected control populations). Thus, even though critical size is not plastic with respect to nutrition, smaller critical size can evolve as an adaptation to nutritional stress. We also demonstrate that this reduction in critical size (rather than differences in growth rate) mediates a trade-off in body weight that the selected populations experience on standard food, on which they show a 15-17% smaller adult body weight. This illustrates how developmental mechanisms that control life history may shape constraints and trade-offs in life history evolution.
Resumo:
As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
Resumo:
As student demographics change, admissions officers are increasingly recruiting a diverse group of incoming students, including underrepresented minorities. We outline how five public institutions identify and recruit potential applicants and review recruitment strategies and methodologies for expanding target recruitment populations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The correlation between trophocyte size and ovarian development is negative in workers and positive in queens of Melipona quadrifasciata anthidioides. The nurse workers which have the ovaries in a higher developmental stage, present smaller fat body cells them newly-emerged ones. In newly-emerged and nurse workers the trophocytes seem to be delivering their stored products, among which probably vitellogenin. As in workers the cell size variations do not support the occurrence of proteic synthesis or the increasing in reverses storage after the adult emergence, the products released from the trophocytes must come from cellular reserves remaining from the larval phase. This datum is in agreement with the early and brief vitellogenic phase in the ovaries of this caste. In foragers the trophocyte size seen stabilized. In queens it was verified considerable increasing in the trophocyte size from virgin to physogastric queen, as well as the maintenance of the size during all fertile life of the queen.
Resumo:
Yearling steers were sorted into four groups based on hip height and fat cover at the start of the finishing period. Each group of sorted steers was fed diets containing 0.59 or 0.64 Mcal NEg per pound of diet. The value of each carcass was determined by use of the Oklahoma State University Boxed Beef Calculator. Sorting to increase hip height decreased the percentage of Choice carcasses and fat cover, increased ribeye area, and had no effect on carcass weight or yield grades 1 and 2. Sorting to decrease initial fat cover decreased carcass weight, carcass fat cover, and percentage of choice carcasses and increased the proportion of yield grades 1 and 2 carcasses. Concentration of energy in the finishing diet had no effect on carcass measurements. Increasing the percentage of yield grades 1 and 2 carcasses did not result in increased economic value of the carcasses when quality grades were lower and when there was a wide spread between Choice and Select carcasses, as occurred in 1996. With less spread between Choice and Select, as in 1997, sorting the cattle to increase yield grades 1 and 2 resulted in increased value, especially for close-trim boxed beef. The results of this study emphasize the importance of knowing how carcasses will grade before selecting a valuebased market for selling cattle.
Resumo:
Steers were sorted into four groups based on hip height and fat cover at the start of the finishing period. Each group of sorted steers was fed a diet containing 0.59 or 0.64 Mcal NEg per pound of diet. Steers with less initial fat cover (.08 in.) gained slightly faster, consumed less feed, and therefore tended to be more efficient than steers with greater finish (.16 in.). Steers fed the lower-energy diet consumed more feed, gained similarly, and were less efficient than steers fed the higher-energy diet. The NRC computer model to evaluate beef cattle diets underpredicted performance of cattle in this experiment, but accurately predicted the differences in gain and feed efficiency observed between the leaner and fatter steers and between the two diets. In this study, the shorter steers (49.4 vs 52.2 in. initial height at the hip) gained faster with slightly greater feed intake and the same feed conversion.
Resumo:
Funding: The research was financially supported by the Holsworth Wildlife Research Endowment.
Resumo:
Mos is an upstream activator of mitogen-activated protein kinase (MAPK) and, in mouse oocytes, is responsible for metaphase II arrest. This activity has been likened to its function in Xenopus oocytes as a component of cytostatic factor. Thus, Mos-deficient female mice (MOS-/-) are less fertile and oocytes derived from these animals fail to arrest at metaphase II and undergo parthenogenetic activation [Colledge, W. H., Carlton, M. B. L., Udy, C. B. & Evans, M. J. (1994) Nature (London) 370, 65-68 and Hashimoto, N., Watanabe, N., Furuta. Y., Tamemoto, B., Sagata, N., Yokoyama, M., Okazaki, K., Nagayoshi, M., Takeda, N., Ikawa, Y. & Aizawa, S. (1994) Nature (London) 370, 68-71]. Here we show that maturing MOS-/- oocytes fail to activate MAPK throughout meiosis, while p34cdc2 kinase activity is normal until late in metaphase II when it decreases prematurely. Phenotypically, the first meiotic division of MOS-/- oocytes frequently resembles mitotic cleavage or produces an abnormally large polar body. In these oocytes, the spindle shape is altered and the spindle fails to translocate to the cortex, leading to the establishment of an altered cleavage plane. Moreover, the first polar body persists instead of degrading and sometimes undergoes an additional cleavage, thereby providing conditions for parthenogenesis. These studies identify meiotic spindle formation and programmed degradation of the first polar body as new and important roles for the Mos/MAPK pathway.
Resumo:
Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly <5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.