980 resultados para Initial values
Resumo:
The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning.
Resumo:
The role dopamine plays in decision-making has important theoretical, empirical and clinical implications. Here, we examined its precise contribution by exploiting the lesion deficit model afforded by Parkinson's disease. We studied patients in a two-stage reinforcement learning task, while they were ON and OFF dopamine replacement medication. Contrary to expectation, we found that dopaminergic drug state (ON or OFF) did not impact learning. Instead, the critical factor was drug state during the performance phase, with patients ON medication choosing correctly significantly more frequently than those OFF medication. This effect was independent of drug state during initial learning and appears to reflect a facilitation of generalization for learnt information. This inference is bolstered by our observation that neural activity in nucleus accumbens and ventromedial prefrontal cortex, measured during simultaneously acquired functional magnetic resonance imaging, represented learnt stimulus values during performance. This effect was expressed solely during the ON state with activity in these regions correlating with better performance. Our data indicate that dopamine modulation of nucleus accumbens and ventromedial prefrontal cortex exerts a specific effect on choice behaviour distinct from pure learning. The findings are in keeping with the substantial other evidence that certain aspects of learning are unaffected by dopamine lesions or depletion, and that dopamine plays a key role in performance that may be distinct from its role in learning. © 2012 The Author.
Resumo:
Direct Numerical Simulations (DNS) of turbulent n-heptane sprays autoigniting at high pressure (P=24bar) and intermediate air temperature (Tair=1000K) have been performed to investigate the physical mechanisms present under conditions where low-temperature chemistry is expected to be important. The initial turbulence in the carrier gas, the global equivalence ratio in the spray region, and the initial droplet size distribution of the spray were varied. Results show that spray ignition exhibits a spotty nature, with several kernels developing independently in those regions where the mixture fraction is close to its most reactive value ξMR (as determined from homogeneous reactor calculations) and the scalar dissipation rate is low. Turbulence reduces the ignition delay time as it promotes mixing between air and the fuel vapor, eventually resulting in lower values of scalar dissipation. High values of the global equivalence ratio are responsible for a larger number of ignition kernels, due to the higher probability of finding regions where ξ=ξMR. Spray polydispersity results in the occurrence of ignition over a wider range of mixture fraction values. This is a consequence of the inhomogeneities in the mixing field that characterize these sprays, where poorly mixed rich spots are seen to alternate with leaner ones which are well-mixed. The DNS simulations presented in this work have also been used to assess the applicability of the Conditional Moment Closure (CMC) method to the simulation of spray combustion. CMC is found to be a valid method for capturing spray autoignition, although care should be taken in the modelling of the unclosed terms appearing in the CMC equations. © 2013 The Combustion Institute.
Resumo:
The utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier-Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust. © 2013 The Institution of Chemical Engineers.
Resumo:
This paper analyzes reaction and thermal front development in porous reservoirs with reacting flows, such as those encountered in shale oil extraction. A set of dimensionless parameters and a 3D code are developed in order to investigate the important physical and chemical variables of such reservoirs when heated by in situ methods. This contribution builds on a 1D model developed for the precursor study to this work. Theory necessary for this study is presented, namely shale decomposition chemical mechanisms, governing equations for multiphase flow in porous media and necessary closure models. Plotting the ratio of the thermal wave speed to the fluid speed allows one to infer that the reaction wave front ends where this ratio is at a minimum. The reaction front follows the thermal front closely, thus allowing assumptions to be made about the extent of decomposition solely by looking at thermal wave progression. Furthermore, this sensitivity analysis showed that a certain minimum permeability is required in order to ensure the formation of a traveling thermal wave. It was found that by studying the non-dimensional governing parameters of the system one can ascribe characteristic values for these parameters for given initial and boundary conditions. This allows one to roughly predict the performance of a particular method on a particular reservoir given approximate values for initial and boundary conditions. Channelling and flow blockage due to carbon residue buildup impeded each method's performance. Blockage was found to be a result of imbalanced heating. Copyright 2012, Society of Petroleum Engineers.
Resumo:
As a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long-term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short-term thin film results to predict the long-term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc.
Resumo:
Model-based and model-free controllers can, in principle, learn arbitrary actions to optimize their behavior, at least those actions that can be expressed and explored. Indeed, these are often referred to as instrumental controllers because their choices are learned to be instrumental for the delivery of desired outcomes. Although this flexibility is very powerful, it comes with an attendant cost of learning. Evolution appears to have endowed everything from the simplest organisms to us with powerful, pre-specified, but inflexible alternatives. These responses are termed Pavlovian, after the famous Russian physiologist and psychologist Pavlov. The responses of the Pavlovian controller are determined by evolutionary (phylogenetic) considerations rather than (ontogenetic) aspects of the contingent development or learning of an individual. These responses directly interact with instrumental choices arising from goal-directed and habitual controllers. This interaction has been studied in a wealth of animal paradigms, and can be helpful, neutral, or harmful, according to circumstance. Although there has been less careful or analytical study of it in humans, it can be interpreted as underpinning a wealth of behavioral aberrations. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Portland cement (PC) is the most widely used binder for ground improvement. However, there are significant environmental impacts associated with its production in terms of high energy consumption and CO2 emissions. Hence, the use of industrial by-products materials or new low-carbon footprint alternative cements has been encouraged. Ground granulated blastfurnace slag (GGBS), a by-product of the steel industry, has been successfully used for such an application, usually activated with an alkali such as lime or PC. In this study the use of MgO as a novel activator for GGBS in ground improvement of soft soils is addressed and its performance was compared to the above two conventional activators as well as PC alone. The GGBS:activator ratio used in this study was 9:1. A range of tests was performed at three curing periods (7, 28 and 90 days), including unconfined compressive strength (UCS), permeability and microstructure analysis. The results show that the MgO performed as the most efficient activator yielding the highest strength and the lowest permeability indicating a very high stabilisation efficiency of the system. © 2012 American Society of Civil Engineers.
Resumo:
Hydraulic fracturing in clayey soils can be triggered by either tensile or shear failure. In this paper, the physical meanings of various equations to predict fracture initiation pressure proposed in the past are discussed using the cavity expansion theory. In particular, when fracturing pressure is plotted against initial confining pressure, published laboratory test results as well as analytical models show a linear relationship. When the slope is close to 2, fracture is initiated by tensile failure of the clay, whereas when the slope is close to 1, it is initiated by shear failure of the clay. In this study, the analytical models, validated only on laboratory test data to date, were applied to unique data from field grouting work in which extensive soil fracturing was carried out to improve the mechanical characteristics of the soft silty clay underlying a bell tower in Venice, Italy. By a careful assessment of initial confining pressure in the field, the variation in recorded injection pressures with confining pressure was examined. Results suggest that the fractures at this site were likely to be initiated by shear failure of the clay, and the values were similar to what was predicted by the model with the shear failure criterion. © 2013 American Society of Civil Engineers.
Resumo:
C-values, which estimate genome size, have puzzled geneticists for years because they bear no relationship to organismal complexity. Though C-values have been estimated for thousands of species, considerably more data are required in order to better understanding genome evolution. This is particularly true for mammals, in which C-values are known for less than 8% of the total number of mammalian species. Among marine mammals, a C-value has been estimated only for the bottlenose dolphin (Tursiops truncatus). Thus examination of additional species of marine mammals is necessary for comparative purposes. It will enable a better understanding of marine mammal genome evolution, and it is also relevant to conservation, because larger genome size has been linked to increased likelihood of extinction in some plant and animal groups. Our study presents C-values of seven marine mammal species, including five cetacean species that are endangered to varying degrees. Similarly to the results for other groups, our results suggest that larger genome size in cetaceans is related to an increased likelihood of extinction.
Resumo:
In this work, the photodegradation of the carcinogenic pollutant 2-naphthol in aqueous solution containing Aldrich humic acid (HA) and ferric ions (Fe(III)) under 125 W and 250 W high pressure mercury lamp (HPML, lambda >= 365 nm) irradiation was investigated. The photooxidation efficiencies were dependent on the pH values, light intensities and Fe(III)/HA concentration in the water, with higher efficiency at pHs 3-4, and 50 mu mol l(-1) Fe(III) with 20 mg l(-1) HA under 250 W HPML. The initial rate of photooxidation increases with increasing, the initial concentration of 2-naphthol from 10 mu mol l(-1) to 100 mu mol l(-1), while do not change at 50 and 100 mu mol l(-1). However, higher removal efficiency of 2-naphthol is achieved at its lower initial concentration of 10 mu mol l(-1), and initial rate of photooxidation is 0.193 mu mol l(-1) min(-1). Dissolved oxygen (DO) plays an important role in the system containing Fe(III)-HA complexes in which Fenton and photo-Fenton reactions were enhanced in the environment. Hydroxyl radicals produced in HA solution with or without ferric ions were determined by using benzene as free radical scavenger and phenol as scavenging products proportional to hydroxyl radicals. By using UV-Vis and excited fluorescence spectrum techniques, the main photooxidation products, which have higher absorption in the region of 240-340 nm, were found, and the mechanisms for the oxidative degradation is proposed.
Resumo:
The phylogenetic relationships among trichodinids remain obscure. As an important diagnostic marker, the morphology of the denticles in the adhesive disc as well as the adoral spiral has been widely used in generic discrimination and species identification of trichodinids. We studied the characters of denticles of the ten genera of Trichodinidae and the sole genus Urceolaria of Urceolariidae by using a quantitative method. The characteristic values were used to generate Manhattan distance, on which the dendrogram was based to construct with the Unweighted Paired Group Method using the Arithmetic mean (UPGMA). The investigations show that all the genera of the family Trichodinidae were clearly separate from the outgroup Urceolaria, and within the Trichodinidae: (i) Dipartiella grouped with Trichodinella and Tripartiella and lay in the closest position to the outgroup with a low dissimilarity, suggesting Dipartiella might be the most primitive genus in the family; (ii) Hemitrichodina clustered in a single clad and lay in the farthest position to the outgroup with the highest dissimilarity, indicating that it might be the most advanced genus; and (iii) the other 6 genera, Trichodina, Paratrichodina, Semitrichodina, Vauchomia, Pallitrichodina and Trichodoxa clustered in a big clad with very low dissimilarity, showing that they are closely related to each other. We discuss the evolutionary trend of the denticle and conclude that the denticles of the adhesive disc should be an apomorphic feature of the trichodinids and their changes could reflect the evolutionary tendencies of these ciliates.
Resumo:
The bioaccumulation, elimination and degradation of C-14-labelled diflubenzuron (DFB) and of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl)urea (CCU) was studied in a laboratory algae culture system of scenedesmus subspicatus. Algae were exposed at an initial concentration of 200 mug/l for seven days. Neither substance had an inhibitory effect on the growth of algae. The half life of DFB and CCU was 3 and 1 days, respectively, as measured by HPLC. The distribution of C-14 between medium and algae was measured. In the case of DFB radioactivity in algae increased steadily and levelled off at approximately 60 % after 5 days. Due to algae growth BCF values decreased from 4310 to 889 for DFB and from 6719 to 304 for CCU during the exposure period. The relationship between algae density and bioconcentration could be correlated by an adsorption isotherm. Elimination of both compounds was rapid during the first hours.
Resumo:
The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.