854 resultados para Informatics technologies
Resumo:
The Patient Informatics Consult Service (PICS) at the Eskind Biomedical Library at Vanderbilt University Medical Center (VUMC) provides patients with consumer-friendly information by using an information prescription mechanism. Clinicians refer patients to the PICS by completing the prescription and noting the patient's condition and any relevant factors. In response, PICS librarians critically appraise and summarize consumer-friendly materials into a targeted information report. Copies of the report are given to both patient and clinician, thus facilitating doctor-patient communication and closing the clinician-librarian feedback loop. Moreover, the prescription form also circumvents many of the usual barriers for patients in locating information, namely, patients' unfamiliarity with medical terminology and lack of knowledge of authoritative sources. PICS librarians capture the time and expertise put into these reports by creating Web-based pathfinders on prescription topics. Pathfinders contain librarian-created disease overviews and links to authoritative resources and seek to minimize the consumer's exposure to unreliable information. Pathfinders also adhere to strict guidelines that act as a model for locating, appraising, and summarizing information for consumers. These mechanisms—the information prescription, research reports, and pathfinders—serve as steps toward the long-term goal of full integration of consumer health information into patient care at VUMC.
Resumo:
This study used the peer-reviewed biomedical literature to define the veterinary informatics knowledgebase and associated subspecialties, and assesses the level of activity in the field over the thirty-year period from 1966 through 1995. Grateful Med was used to search the MEDLINE bibliographic database for articles that shared one or more Medical Subject Headings (MeSH) keywords from the veterinary and medical informatics subject headings. Each of ninety-five MeSH medical informatics terms was assigned to one of twelve veterinary informatics subspecialties. The number of articles retrieved by each MeSH keyword and subspecialty was calculated. A total of 611 articles were retrieved, representing the contributions of 1,338 authors published in 153 journals. The field experienced slow growth over the twenty-year period from 1966 through 1985. In the following decade, the cumulative number of veterinary informatics articles almost tripled and the percentage of veterinary-related articles that included an informatics component increased almost two-and-one-half fold. Despite this recent growth, the number of veterinary-related articles with an informatics component has never exceeded 1% of either the veterinary or medical informatics literature over the past thirty years, and representation of veterinary subspecialties in the literature varied widely.
Resumo:
As the telecommunications industry evolves over the next decade to provide the products and services that people will desire, several key technologies will become commonplace. Two of these, automatic speech recognition and text-to-speech synthesis, will provide users with more freedom on when, where, and how they access information. While these technologies are currently in their infancy, their capabilities are rapidly increasing and their deployment in today's telephone network is expanding. The economic impact of just one application, the automation of operator services, is well over $100 million per year. Yet there still are many technical challenges that must be resolved before these technologies can be deployed ubiquitously in products and services throughout the worldwide telephone network. These challenges include: (i) High level of accuracy. The technology must be perceived by the user as highly accurate, robust, and reliable. (ii) Easy to use. Speech is only one of several possible input/output modalities for conveying information between a human and a machine, much like a computer terminal or Touch-Tone pad on a telephone. It is not the final product. Therefore, speech technologies must be hidden from the user. That is, the burden of using the technology must be on the technology itself. (iii) Quick prototyping and development of new products and services. The technology must support the creation of new products and services based on speech in an efficient and timely fashion. In this paper I present a vision of the voice-processing industry with a focus on the areas with the broadest base of user penetration: speech recognition, text-to-speech synthesis, natural language processing, and speaker recognition technologies. The current and future applications of these technologies in the telecommunications industry will be examined in terms of their strengths, limitations, and the degree to which user needs have been or have yet to be met. Although noteworthy gains have been made in areas with potentially small user bases and in the more mature speech-coding technologies, these subjects are outside the scope of this paper.
Resumo:
The goal of the project is to analyze, experiment, and develop intelligent, interactive and multilingual Text Mining technologies, as a key element of the next generation of search engines, systems with the capacity to find "the need behind the query". This new generation will provide specialized services and interfaces according to the search domain and type of information needed. Moreover, it will integrate textual search (websites) and multimedia search (images, audio, video), it will be able to find and organize information, rather than generating ranked lists of websites.
Resumo:
The robotics is one of the most active areas. We also need to join a large number of disciplines to create robots. With these premises, one problem is the management of information from multiple heterogeneous sources. Each component, hardware or software, produces data with different nature: temporal frequencies, processing needs, size, type, etc. Nowadays, technologies and software engineering paradigms such as service-oriented architectures are applied to solve this problem in other areas. This paper proposes the use of these technologies to implement a robotic control system based on services. This type of system will allow integration and collaborative work of different elements that make up a robotic system.
Resumo:
A hydrogen economy is needed, in order to resolve current environmental and energy-related problems. For the introduction of hydrogen as an important energy vector, sophisticated materials are required. This paper provides a brief overview of the subject, with a focus on hydrogen storage technologies for mobile applications. The unique properties of hydrogen are addressed, from which its advantages and challenges can be derived. Different hydrogen storage technologies are described and evaluated, including compression, liquefaction, and metal hydrides, as well as porous materials. This latter class of materials is outlined in more detail, explaining the physisorption interaction which leads to the adsorption of hydrogen molecules and discussing the material characteristics which are required for hydrogen storage application. Finally, a short survey of different porous materials is given which are currently investigated for hydrogen storage, including zeolites, metal organic frameworks (MOFs), covalent organic frameworks (COFs), porous polymers, aerogels, boron nitride materials, and activated carbon materials.
Resumo:
Traditional visual servoing systems have been widely studied in the last years. These systems control the position of the camera attached to the robot end-effector guiding it from any position to the desired one. These controllers can be improved by using the event-based control paradigm. The system proposed in this paper is based on the idea of activating the visual controller only when something significant has occurred in the system (e.g. when any visual feature can be loosen because it is going outside the frame). Different event triggers have been defined in the image space in order to activate or deactivate the visual controller. The tests implemented to validate the proposal have proved that this new scheme avoids visual features to go out of the image whereas the system complexity is reduced considerably. Events can be used in the future to change different parameters of the visual servoing systems.
Resumo:
Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only the visual information obtained from a camera to guide a robot from any robot pose to a desired one. However, IBVS requires the estimation of different parameters that cannot be obtained directly from the image. These parameters range from the intrinsic camera parameters (which can be obtained from a previous camera calibration), to the measured distance on the optical axis between the camera and visual features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The experiments prove that the computation of the depth value for each visual feature improves the system performance.
Resumo:
Corneal and anterior segment imaging techniques have become a crucial tool in the clinical practice of ophthalmology, with a great variety of applications, such as corneal curvature and pachymetric analysis, detection of ectatic corneal conditions, anatomical study of the anterior segment prior to phakic intraocular lens implantation, or densitometric analysis of the crystalline lens. From the Placido-based systems that allow only a characterization of the geometry of the anterior corneal surface to the Scheimpflug photography-based systems that provide a characterization of the cornea, anterior chamber, and crystalline lens, there is a great variety of devices with the capability of analyzing different anatomical parameters with very high precision. To date, Scheimpflug photography-based systems are the devices providing the more complete analysis of the anterior segment in a non-invasive way. More developments are required in anterior segment imaging technologies in order to improve the analysis of the crystalline lens structure as well as the ocular structures behind the iris in a non-invasive way when the pupil is not dilated.
Resumo:
Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.
New Approaches for Teaching Soil and Rock Mechanics Using Information and Communication Technologies
Resumo:
Soil and rock mechanics are disciplines with a strong conceptual and methodological basis. Initially, when engineering students study these subjects, they have to understand new theoretical phenomena, which are explained through mathematical and/or physical laws (e.g. consolidation process, water flow through a porous media). In addition to the study of these phenomena, students have to learn how to carry out estimations of soil and rock parameters in laboratories according to standard tests. Nowadays, information and communication technologies (ICTs) provide a unique opportunity to improve the learning process of students studying the aforementioned subjects. In this paper, we describe our experience of the incorporation of ICTs into the classical teaching-learning process of soil and rock mechanics and explain in detail how we have successfully developed various initiatives which, in summary, are: (a) implementation of an online social networking and microblogging service (using Twitter) for gradually sending key concepts to students throughout the semester (gradual learning); (b) detailed online virtual laboratory tests for a delocalized development of lab practices (self-learning); (c) integration of different complementary learning resources (e.g. videos, free software, technical regulations, etc.) using an open webpage. The complementary use to the classical teaching-learning process of these ICT resources has been highly satisfactory for students, who have positively evaluated this new approach.
Resumo:
The sustainability strategy in urban spaces arises from reflecting on how to achieve a more habitable city and is materialized in a series of sustainable transformations aimed at humanizing different environments so that they can be used and enjoyed by everyone without exception and regardless of their ability. Modern communication technologies allow new opportunities to analyze efficiency in the use of urban spaces from several points of view: adequacy of facilities, usability, and social integration capabilities. The research presented in this paper proposes a method to perform an analysis of movement accessibility in sustainable cities based on radio frequency technologies and the ubiquitous computing possibilities of the new Internet of Things paradigm. The proposal can be deployed in both indoor and outdoor environments to check specific locations of a city. Finally, a case study in a controlled context has been simulated to validate the proposal as a pre-deployment step in urban environments.
Resumo:
The word technology refers to the knowledge of techniques, skills, methods or processes used to produce goods, services or to reach specific objectives (research, business, etc.). The concept technology can also be used to make reference to devices, computers and factories.