887 resultados para Inflammation Mediators
Resumo:
High saturated and trans fatty acid intake, the typical dietary pattern of Western populations, favors a proinflammatory status that contributes to generating insulin resistance (IR). We examined whether the consumption of these fatty acids was associated with IR and inflammatory markers. In this cross-sectional study, 127 non-diabetic individuals were allocated to a group without IR and 56 to another with IR, defined as homeostasis model assessment-IR (HOMA-IR) >2.71. Diet was assessed using 24-h food recalls. Multiple linear regression was employed to test independent associations with HOMA-IR. The IR group presented worse anthropometric, biochemical and inflammatory profiles. Energy intake was correlated with abdominal circumference and inversely with adiponectin concentrations (r = -0.227, P = 0.002), while saturated fat intake correlated with inflammatory markers and trans fat with HOMA-IR (r = 0.160, P = 0.030). Abdominal circumference was associated with HOMA-IR (r = 0.430, P < 0.001). In multiple analysis, HOMA-IR remained associated with trans fat intake (beta = 1.416, P = 0.039) and body mass index (beta = 0.390, P < 0.001), and was also inversely associated with adiponectin (beta = -1.637, P = 0.004). Inclusion of other nutrients (saturated fat and added sugar) or other inflammatory markers (IL-6 and CRP) into the models did not modify these associations. Our study supports that trans fat intake impairs insulin sensitivity. The hypothesis that its effect could depend on transcription factors, resulting in expression of proinflammatory genes, was not corroborated. We speculate that trans fat interferes predominantly with insulin signaling via intracellular kinases, which alter insulin receptor substrates.
Resumo:
Melanoma cells express the platelet-activating factor receptor (PAFR) and, thus, respond to PAF, a bioactive lipid produced by both tumour cells and those in the tumour microenvironment such as macrophages. Here, we show that treatment of a human melanoma SKmel37 cell line with cisplatin led to increased expression of PAFR and its accumulation. In the presence of exogenous PAF, melanoma cells were significantly more resistant to cisplatin-induced cell death. Inhibition of PAFR-dependent signalling pathways by a PAFR antagonist (WEB2086) showed chemosensitisation of melanoma cells in vitro. Nude mice were inoculated with SKmel37 cells and treated with cisplatin and WEB2086. Animals treated with both agents showed significantly decreased tumour growth compared to the control group and groups treated with only one agent. PAFR accumulation and signalling are part of a prosurvival program of melanoma cells, therefore constituting a promising target for combination therapy for melanomas.
Resumo:
There is evidence that the platelet-activating factor receptor (PAFR) is involved in the clearance of apoptotic cells by macrophages, and that this is associated with anti-inflammatory phenotype. Our group has previously shown that coinjection of a large number of apoptotic cells can promote tumor growth from a subtumorigenic dose of melanoma cells. Here, we studied the involvement of the PAFR in the tumor growth promoting effect of apoptotic cells. A sub-tumorigenic dose of melanoma cells (Tm1) was coinjected with apoptotic Tm1 cells, subcutaneously in the flank of C57Bl/6 mice, and the volume was monitored for 30 days. Animals received the PAFR antagonists, WEB2170 or PCA4248 (5 mg/kg body weight) or vehicle, by peritumoral daily injection for 5 days. Results showed that PAFR antagonists significantly inhibited the tumor growth induced by the coinjection of a subtumorigenic dose of melanoma cells together with apoptotic cells. This was accompanied by inhibition of early neutrophil and macrophage infiltration. Addition of (platelet-activating factor) to this system has no significant effect. PAFR antagonists did not affect the promoting effect of carrageenan. We suggest that the recognition of apoptotic cells by phagocytes leads to activation of PAFR pathways, resulting in a microenvironment response favorable to melanoma growth.
Resumo:
Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303: E272-E282, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00053.2012.-The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNF alpha and IL-1 beta by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNF alpha production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.
Resumo:
We evaluated the effects of aerobic exercise (AE) on airway inflammation, exhaled nitric oxide levels (ENO), airway remodeling, and the expression of Thl, Th2 and regulatory cytokines in a guinea pig asthma model. Animals were divided into 4 groups: non-trained and non-sensitized (C), non-sensitized and AE (AE), ovalbumin-sensitized and non-trained (OVA), and OVA-sensitized and AE (OVA + AE). OVA inhalation was performed for 8 weeks, and AE was conducted for 6 weeks beginning in the 3rd week of OVA sensitization. Compared to the other groups, the OVA + AE group had a reduced density of eosinophils and lymphocytes, reduced expression of interleukin (IL)-4 and IL-13 and an increase in epithelium thickness (p < 0.05). AE did not modify airway remodeling or ENO in the sensitized groups (p > 0.05). Neither OVA nor AE resulted in differences in the expression of IL-2, IFN-gamma, IL-10 or IL1-ra. Our results show that AE reduces the expression of Th2 cytokines and allergic airway inflammation and induces epithelium remodeling in sensitized guinea pigs. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
Aerobic conditioning (AC) performed either during or after sensitization reduces allergic inflammation in mice; however, the effects of AC performed before and during allergic sensitization on airway inflammation are unknown. Mice were divided into Control, AC, OVA, and AC + OVA groups. Mice were trained in a treadmill followed by either ovalbumin (OVA) sensitization or saline administration. Peribronchial inflammation, OVA-specific IgE and IgG1 titers, the expression of Th1 and Th2 cytokines, and airway remodeling were evaluated, as well as the expression of Eotaxin, RANTES, ICAM-1, VCAM-1, TGF-beta and VEGF. Aerobic conditioning performed before and during allergic sensitization displayed an inhibitory effect on the OVA-induced migration of eosinophils and lymphocytes to the airways, a reduction of IgE and IgG1 titers and an inhibition of the expression of Th2 cytokines. The AC + OVA group also demonstrated reduced expression of ICAM-1, VCAM-1, RANTES, TGF-beta and VEGF, as well as decreased airway remodeling (p < 0.05). The effects of AC before and during the sensitization process inhibit allergic airway inflammation and reduce the production of Th2 cytokines and allergen-specific IgE and IgG1.
Resumo:
Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 mu M CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFN gamma through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPAR gamma receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2 alpha, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2 alpha induced by LPS/IFN gamma. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation. Cell Death and Disease (2012) 3, e331; doi:10.1038/cddis.2012.71; published online 28 June 2012
Resumo:
Interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, and IL-6 have been established as important mediators of fever induced by lipopolysaccharide (LPS) from Gram-negative bacteria. Whether these pro-inflammatory cytokines are also important in mediating fever induced by live bacteria remains less certain. We therefore investigated the following: (1) the synthesis of TNF-alpha, IL-1 beta, and IL-6 during E. coli-induced fever and (2) the effect of blocking the action of cytokines within the brain on E. coli-induced fever. Body or tail skin temperature (bT or Tsk, respectively) was measured by biotelemetry or telethermometry, every 30 min, during 6 or 24 h. Depending on the number of colony-forming units (CFU) injected i.p., administration of E. coli induced a long-lasting increase in bT of male Wistar rats. The duration of fever did not correlate with the number of CFU found in peritoneal cavity or blood. Because 2.5 x 10(8) CFU induced a sustained fever without inducing a state of sepsis/severe infection, this dose was used in subsequent experiments. The E. coli-induced increase in bT was preceded by a decrease in Tsk, reflecting a thermoregulatory response. TNF-alpha, IL-1 beta, and IL-6 were detected at 3 h in serum of animals injected i.p. with E. coli. In the peritoneal exudates, TNF-alpha, IL-1 beta, and IL-6 were detected at 0.5 and 3 h after E. coli administration. Moreover, both IL-1 beta and IL-6, but not TNF-alpha, were found in the cerebrospinal fluid (CSF) and hypothalamus of animals injected with E. coli. Although pre-treatment (i.c.v., 2 mu l, 15 min before) with anti-IL-6 antibody (anti-IL-6, 5 mu g) reduced E. coli-induced fever, pre-treatment with either IL-1 receptor antagonist (IL-1ra, 200 mu g) or soluble TNF receptor I (sTNFRI, 500 ng) had no effect on the fever response. In conclusion, replicating E. coli promotes an integrated thermoregulatory response in which the central action of IL-6, but not IL-1 and TNF, appears to be important.
Resumo:
Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti-and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1 beta, IL-6, TNF-alpha, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-alpha mRNA in MEAT was increased in the cachectic animals (p < 0.05) in relation to SC. RPAT protein expression of all studied cytokines was increased in cachectic animals in relation to SC and SPF (p < 0.05). In this pad, IL-10/TNF-alpha ratio was reduced in the cachectic animals in comparison with SC (p < 0.05) indicating inflammation. Exercise training improved IL-10/TNF-alpha ratio and induced a reduction of the infiltrating monocytes both in MEAT and RPAT (p < 0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT.
Resumo:
AIM: To investigate the effects of titanium dioxide (TiO2) nanoparticles (NPTiO2) and microparticles (MPTiO2) on the inflammatory response in the small intestine of mice. METHODS: BI 57/6 male mice received distilled water suspensions containing TiO2 (100 mg/kg body weight) as NPTiO2 (66 nm), or MPTiO2 (260 nm) by gavage for 10 d, once a day; the control group received only distilled water. At the end of the treatment the duodenum, jejunum and ileum were extracted for assessment of cytokines, inflammatory cells and titanium content. The cytokines interleukin (IL)-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IL-23, tumor necrosis factor-alpha (TNF-alpha), intracellular interferon-gamma (IFN-gamma) and transforming growth factor-beta (TGF-beta) were evaluated by enzyme-linked immunosorbent assay in segments of jejunum and ileum (mucosa and underlying muscular tissue). CD4(+) and CD8(+) T cells, natural killer cells, and dendritic cells were evaluated in duodenum, jejunum and ileum samples fixed in 10% formalin by immunohistochemistry. The titanium content was determined by inductively coupled plasma atomic emission spectrometry. RESULTS: We found increased levels of T CD4(+) cells (cells/mm(2)) in duodenum: NP 1240 +/- 139.4, MP 1070 +/- 154.7 vs 458 +/- 50.39 (P < 0.01); jejunum: NP 908.4 +/- 130.3, MP 813.8 +/- 103.8 vs 526.6 +/- 61.43 (P < 0.05); and ileum: NP 818.60 +/- 123.0, MP 640.1 +/- 32.75 vs 466.9 +/- 22.4 (P < 0.05). In comparison to the control group, the groups receiving TiO2 showed a statistically significant increase in the levels of the inflammatory cytokines IL-12, IL-4, IL-23, TNF-alpha, IFN-gamma and TGF-beta. The cytokine production was more pronounced in the ileum (mean SE): IL-12: NP 33.98 +/- 11.76, MP 74.11 +/- 25.65 vs 19.06 +/- 3.92 (P < 0.05); IL-4: NP 17.36 +/- 9.96, MP 22.94 +/- 7.47 vs 2.19 +/- 0.65 (P < 0.05); IL-23: NP 157.20 +/- 75.80, MP 134.50 +/- 38.31 vs 22.34 +/- 5.81 (P < 0.05); TNF alpha: NP 3.71 +/- 1.33, MP 5.44 +/- 1.67 vs 0.99 +/- 019 (P < 0.05); IFN gamma: NP 15.85 +/- 9.99, MP 34.08 +/- 11.44 vs 2.81 +/- 0.69 (P < 0.05); and TGF-alpha: NP 780.70 +/- 318.50, MP 1409.00 +/- 502.20 vs 205.50 +/- 63.93 (P < 0.05). CONCLUSION: Our findings indicate that TiO2 particles induce a Th1-mediated inflammatory response in the small bowel in mice. (C) 2012 Baishideng. All rights reserved.
Resumo:
Sao Paulo Research Foundation [FAPESP/05/57710-3]
Resumo:
IL-4 produced by Th2 cells can block cytokine production by Th1 cells, and Th1 IFN-gamma is known to counterregulate Th2 immune response, inhibiting allergic eosinophilia. As intrauterine undernutrition can attenuate lung inflammation, we investigated the influence of intrauterine undernourishment on the Th1/Th2 cytokine balance and allergic lung inflammation. Intrauterine undernourished offspring were obtained from dams fed 50% of the nourished diet of their counterparts and were immunized at 9 weeks of age. We evaluated the cell counts and cytokine protein expression in the bronchoalveolar lavage, mucus production and collagen deposition, and cytokine gene expression and transcription factors in lung tissue 21 days after ovalbumin immunization. Intrauterine undernourishment significantly reduced inflammatory cell airway infiltration, mucus secretion and collagen deposition, in rats immunized and challenged. Intrauterine undernourished rats also exhibited an altered cytokine expression profile, including higher TNF-alpha and IL-1 beta expression and lower IL-6 expression than well-nourished rats following immunization and challenge. Furthermore, the intrauterine undernourished group showed reduced ratios of the IL-4/IFN-gamma and the transcription factors GATA-3/T-Bet after immunization and challenge. We suggest that the attenuated allergic lung inflammation observed in intrauterine undernourished rats is related to an altered Th1/Th2 cytokine balance resulting from a reduced GATA-3/T-bet ratio. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.
Resumo:
Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.