999 resultados para Inference mechanisms
Resumo:
The lateral epitaxial overgrowth of GaN was carried out by low-pressure metalorganic chemical vapor deposition, and the cross section shape of the stripes was characterized by scanning electron microscopy. Inclined {11-2n} facets (n approximate to 1-2.5) were observed in the initial growth, and they changed gradually into the vertical {11-20} sidewalls in accordance with the process of the lateral overgrowth. A model was proposed utilizing diffusion equations and boundary conditions to simulate the concentration of the Ga species constituent throughout the concentration boundary layer. Solutions to these equations are found using the two-dimensional, finite element method. We suggest that the observed evolution of sidewall facets results from the variation of the local V/III ratio during the process of lateral overgrowth induced by the lateral supply of the Ga species from the SiNx mask regions to the growing GaN regions.
Resumo:
Spin-density-functional theory is employed to calculate the conductance G through a quasi-one-dimensional quantum wire. In addition to the usual subband quantization plateaus at G=n(2e(2)/h), we find additional structures at (n+1/2)(2e(2)/h). The extra structures appear whether or not the electrons in the wire spin polarize. However, only the spin-polarized case reproduces the experimental temperature and magnetic field dependences.
Resumo:
We report on a detailed investigation on the temperature-dependent behavior of photoluminescence from molecular beam epitaxy (MBE)-grown chlorine-doped ZnSe epilayers. The overwhelming neutral donor bound exciton ((ClX)-X-0) emission at 2.797 eV near the band edge with a full-width at half-maximum (FWHM) of similar to 13 meV reveals the high crystalline quality of the samples used. In our experiments, the quick quenching of the (ClX)-X-0 line above 200 K is mainly due to the presence of a nonradiative center with a thermal activation energy of similar to 90 meV, The same activation energy and similar quenching tendency of the (ClX)-X-0 line and the I-3 line at 2.713 eV indicate that they originate from the same physical mechanism. We demonstrate for the first time that the dominant decrease of the integrated intensity of the I, line is due to the thermal excitation of the "I-3 center"-bound excitons to its free exciton states, leaving the "I-3 centers" as efficient nonradiative centers. The optical performance of ZnSe materials is expected to be greatly improved if the density of the "I-3 center" can be controlled. The decrease in the luminescence intensity at moderately low temperature (30-200 K) of the (ClX)-X-0 line is due to the thermal activation of neutral-donor-bound excitons ((ClX)-X-0) to free excitons. (C) 2000 Published by Elsevier Science B.V.
Resumo:
Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.
Resumo:
The methane hydrate was formed in a pressure vessel 38 mm in id and 500 mm in length. Experimental works on gas production from the hydrate-bearing core by depressurization to 0.1, 0.93, and 1.93 MPa have been carried out. The hydrate reservoir simulator TOUGH-Fx/Hydrate was used to simulate the experimental gas production behavior, and the intrinsic hydration dissociation constant (K-0) fitted for the experimental data was on the order of 104 mol m(-2) Pa-1 s(-1), which was one order lower than that of the bulk hydrate dissociation. The sensitivity analyses based on the simulator have been carried out, and the results suggested that the hydrate dissociation kinetics had a great effect on the gas production behavior for the laboratory-scale hydrate-bearing core. However for a field-scale hydrate reservoir, the flow ability dominated the gas production behavior and the effect of hydrate dissociation kinetics on the gas production behavior could be neglected.