941 resultados para In-plane Shear
Resumo:
We provide evidence that indicates the star cluster Pfleiderer 2, which is projected in a rich field, as a newly identified Galactic globular cluster. Since it is located in a crowded field, core extraction and decontamination tools were applied to reveal the cluster sequences in B, V, and I color-magnitude diagrams (CMDs). The main CMD features of Pfleiderer 2 are a tilted red giant branch and a red horizontal branch, indicating a high metallicity around solar. The reddening is E(B - V) = 1.01. The globular cluster is located at a distance of d(circle dot) = 16 +/- 2 kpc from the Sun. The cluster is located 2.7 kpc above the Galactic plane and at a distance of R(GC) = 9.7 kpc from the Galactic center, which is unusual for a metal-rich globular cluster.
Resumo:
Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3247349]
Resumo:
Investigations of chaotic particle transport by drift waves propagating in the edge plasma of tokamaks with poloidal zonal flow are described. For large aspect ratio tokamaks, the influence of radial electric field profiles on convective cells and transport barriers, created by the nonlinear interaction between the poloidal flow and resonant waves, is investigated. For equilibria with edge shear flow, particle transport is seen to be reduced when the electric field shear is reversed. The transport reduction is attributed to the robust invariant tori that occur in nontwist Hamiltonian systems. This mechanism is proposed as an explanation for the transport reduction in Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao , Plasma Phys. Controlled Fusion 43, 1181 (2001)] for discharges with a biased electrode at the plasma edge.
Resumo:
The excitation of magnetorotational instability (MRI) in rotating laboratory plasmas is investigated. In contrast to astrophysical plasmas, in which gravitation plays an important role, in laboratory plasmas it can be neglected and the plasma rotation is equilibrated by the pressure gradient. The analysis is restricted to the simple model of a magnetic confinement configuration with cylindrical symmetry, in which nonaxisymmetric perturbations are investigated using the local approximation. Starting from the simplest case of an ideal plasma, the corresponding dispersion relations are derived for more complicated models including the physical effects of parallel and perpendicular viscosities. The Friemann-Rotenberg approach used for ideal plasmas is generalized for the viscous model and an analytical expression for the instability boundary is obtained. It is shown that, in addition to the standard effect of radial derivative of the rotation frequency (the Velikhov effect), which can be destabilizing or stabilizing depending on the sign of this derivative in the ideal plasma, there is a destabilizing effect proportional to the fourth power of the rotation frequency, or, what is the same, to the square of the plasma pressure gradient, and to the square of the azimuthal mode number of the perturbations. It is shown that the instability boundary also depends on the product of the plasma pressure and density gradients, which has a destabilizing effect when it is negative. In the case of parallel viscosity, the MRI looks like an ideal instability independent of viscosity, while, in the case of strong perpendicular viscosity, it is a dissipative instability with the growth rate inversely proportional to the characteristic viscous decay rate. We point out, however, that the modes of the continuous range of the magnetohydrodynamics spectrum are not taken into account in this paper, and they can be more dangerous than those that are considered. (c) 2008 American Institute of Physics.
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
Differential measurements of the elliptic (upsilon(2)) and hexadecapole (upsilon(4)) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p(T)) and collision centrality or number of participant nucleons (N(part)) for Au + Au collisions at root s(NN) = 200 GeV/ The upsilon(2,4) measurements at pseudorapidity vertical bar eta vertical bar <= 0.35, obtained with four separate reaction-plane detectors positioned in the range 1.0 < vertical bar eta vertical bar < 3.9, show good agreement, indicating the absence of significant Delta eta-dependent nonflow correlations. Sizable values for upsilon(4)(p(T)) are observed with a ratio upsilon(4)(p(T), N(part))/upsilon(2)(2)(p(T), N(part)) approximate to 0.8 for 50 less than or similar to N(part) less than or similar to 200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N(part) greater than or similar to 200 this ratio increases up to 1.7 in the most central collisions.
Resumo:
We present inclusive charged hadron elliptic flow (v(2)) measured over the pseudorapidity range vertical bar eta vertical bar < 0.35 in Au+Au collisions at s(NN)=200 GeV. Results for v(2) are presented over a broad range of transverse momentum (p(T)=0.2-8.0 GeV/c) and centrality (0-60%). To study nonflow effects that are correlations other than collective flow, as well as the fluctuations of v(2), we compare two different analysis methods: (1) the event-plane method from two independent subdetectors at forward (vertical bar eta vertical bar=3.1-3.9) and beam (vertical bar eta vertical bar>6.5) pseudorapidities and (2) the two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p(T) and in centrality 0-40%. There is at most a 20% difference in the v(2) between the two event-plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event-plane measurements are discussed.
Resumo:
The model of the position-dependent noncommutativity in quantum mechanics is proposed. We start with given commutation relations between the operators of coordinates [(x) over cap (i), (x) over cap (j)] = omega(ij) ((x) over cap), and construct the complete algebra of commutation relations, including the operators of momenta. The constructed algebra is a deformation of a standard Heisenberg algebra and obeys the Jacobi identity. The key point of our construction is a proposed first-order Lagrangian, which after quantization reproduces the desired commutation relations. Also we study the possibility to localize the noncommutativity.
Resumo:
Fluctuations in the initial geometry of a nucleus-nucleus collision have been recently shown to result in a new type of directed flow (v(1)) that, unlike the usual directed flow, is also present at midrapidity. We compute this new v(1) versus transverse momentum and centrality for Au-Au collisions at RHIC using the hydrodynamic code NeXSPheRIO. We find that the event plane of v(1) is correlated with the angle of the initial dipole of the distribution, as predicted, though with a large dispersion. It is uncorrelated with the reaction plane. Our results are in excellent agreement with results inferred from STAR correlation data.
Resumo:
We study a Al(x)Ga(x-1)As parabolic quantum well (PQW) with GaAs/Al(x)Ga(x-1)As square superlattice. The magnetotransport in PQW with intentionally disordered short-period superlattice reveals a surprising transition from electrons distribution over whole parabolic well to independent-layer states with unequal density. The transition occurs in the perpendicular magnetic field at Landau filling factor v approximate to 3 and is signaled by the appearance of the strong and developing fractional quantum Hall (FQH) states and by the enhanced slope of the Hall resistance. We attribute the transition to the possible electron localization in the x-y plane inside the lateral wells, and formation of the FQH states in the central well of the superlattice, driven by electron-electron interaction.
Resumo:
We experimentally study the Aharonov-Bohm-conductance oscillations under external gate voltage in a semiconductor quantum ring with a radius of 80 nm. We find that, in the linear regime, the resistance-oscillation plot in the voltage-magnetic-field plane corresponds to the quantum ring energy spectra. The chessboard pattern assembled by resistance diamonds, while loading the ring, is attributed to a short electron lifetime in the open configuration, which agrees with calculations within the single-particle model. Remarkably, the application of a small dc current allows observing strong deviations in the oscillation plot from this pattern accompanied by a magnetic-field symmetry break. We relate such behavior to the higher-order-conductance coefficients determined by electron-electron interactions in the nonlinear regime.
Resumo:
Electron paramagnetic resonance measurements of NiCl(2)-4SC(NH(2))(2) reveal the low-energy spin dispersion, including a magnetic-field interval in which the two-magnon continuum is within k(B)T of the ground state, allowing a continuum of excitations over a range of k states, rather than only the k=0 single-magnon excitations. This produces a novel Y shape in the frequency-field EPR spectrum measured at T >= 1.5 K. Since the interchain coupling J(perpendicular to)< k(B)T, this shape can be reproduced by a single S=1 antiferromagnetic Heisenberg chain with a strong easy-plane single-ion anisotropy. Importantly, the combination of experiment and modeling we report herein demonstrates a powerful approach to probing spin dispersion in a wide range of interacting magnetic systems without the stringent sample requirements and complications associated with inelastic scattering experiments.
Resumo:
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a theta modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the theta-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the theta-modified Pauli equation. We extract theta-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a theta modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal Einstein-Podolsky-Rosen states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the commutative space, are possible due to the space noncommutativity. This allows us to estimate an upper bound on the noncommutativity parameter.
Resumo:
In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field, changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior of the flow has crucial consequences for the dynamics of important processes in the blood, such as the activation of platelets which are involved in the thrombus formation.
Resumo:
We study the stability of AdS black holes rotating in a single two-plane for tensor-type gravitational perturbations in D > 6 space-time dimensions. First, by an analytic method, we show that there exists no unstable mode when the magnitude a of the angular momentum is smaller than r(h)(2)/R, where r(h) is the horizon radius and R is the AdS curvature radius. Then, by numerical calculations of quasinormal modes, using the separability of the relevant perturbation equations, we show that an instability occurs for rapidly rotating black holes with a > r(h)(2)/R, although the growth rate is tiny (of order 10(-12) of the inverse horizon radius). We give numerical evidence indicating that this instability is caused by superradiance.