906 resultados para In Situ Transmission Electron Microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key element in the rational design of hybrid organic-inorganic nanostructures, is control of surfactant packing and adsorption onto the inorganic phase in crystal growth and assembly. In layered single crystal nanofibers and bilayered 2D nanosheets of vanadium oxide, we show how the chemisorption of preferred densities of surfactant molecules can direct formation of ordered, curved layers. The atom-scale features of the structures are described using molecular dynamics simulations that quantify surfactant packing effects and confirm the preference for a density of 5 dodecanethiol molecules per 8 vanadium attachment sites in the synthesised structures. This assembly maintains a remarkably well ordered interlayer spacing, even when curved. The assemblies of interdigitated organic bilayers on V2O5 are shown to be sufficiently flexible to tolerate curvature while maintaining a constant interlayer distance without rupture, delamination or cleavage. The accommodation of curvature and invariant structural integrity points to a beneficial role for oxide-directed organic film packing effects in layered architectures such as stacked nanofibers and hybrid 2D nanosheet systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide microarrays are useful tools for characterizing the humoral response against methylated antigens. They are usually prepared by printing unmodified and methylated peptides on substrates such as functionalized microscope glass slides. The preferential capture of antibodies by methylated peptides suggests the specific recognition of methylated epitopes. However, unmodified peptide epitopes can be masked due to their interaction with the substrate. The accessibility of unmodified peptides and thus the specificity of the recognition of methylated peptide epitopes can be probed using the in situ methylation procedure described here. Alternately, the in situ methylation of peptide microarrays allows probing the presence of antibodies directed toward methylated epitopes starting from easy-to-make and cost-effective unmodified peptide libraries. In situ methylation was performed using formaldehyde in the presence of sodium cyanoborohydride and nickel chloride. This chemical procedure converts lysine residues into mono- or dimethyl lysines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This memoir recalls the instruments in the Electron Microscope Unit and the staff, students and visitors who used them. Accessory equipment is also described because much of it was innovative and built in the laboratory, also, much of the science would not have been possible without it. This publication includes 33 figures, 4 plates and 7 appendices. The appendices record that 54 MBA staff and 196 students and visitors have used the microscopes and that 413 titles have been published (to the end of 2006).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance in Fasciola hepatica to triclabendazole (Fasinex) has emerged in several countries. Benzimidazole resistance in parasitic nematodes has been linked to a single amino acid substitution (phenylalanine to tyrosine) at position 200 on the [beta]-tubulin molecule. Sequencing of [beta]-tubulin cDNAs from triclabendazole-susceptible and triclabendazole-resistant flukes revealed no amino acid differences between their respective primary amino acid sequences. In order to investigate the mechanism of triclabendazole resistance, triclabendazole-susceptible and triclabendazole-resistant flukes were incubated in vitro with triclabendazole sulphoxide (50 [mu]g/ml). Scanning and transmission electron microscopy revealed extensive damage to the tegument of triclabendazole-susceptible F. hepatica, whereas triclabendazole-resistant flukes showed only localized and relatively minor disruption of the tegument covering the spines. Immunocytochemical studies, using an anti-tubulin antibody, showed that tubulin organization was disrupted in the tegument of triclabendazole-susceptible flukes. No such disruption was evident in triclabendazole-resistant F. hepatica. The significance of these findings is discussed with regard to the mechanism of triclabendazole resistance in F. hepatica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of apoptosis-inducing agents in the treatment of malignant cancer is increasingly being considered as a therapeutic approach. In this study, the induction of apoptosis and necrosis was examined in terms of temporal dose responses, comparing a malignant and nonmalignant breast cell line. Staurosporine (SSP)-induced apoptosis and H2O2-induced necrosis were evaluated by two cytotoxicity assays, neutral red (NR) and methyl-thiazolyl tertrazolium (MTT), in comparison with a differential dye uptake assay, using Hoechst33342/propidium iodide (Hoechst/PI). Confirmatory morphological assessment was also performed by routine resin histology and transmission electron microscopy. Cell viability was assessed over a 0.5-48 h time course. In nonmalignant HBL-100 cells, 50 nM SSP induced 100% apoptosis after a 48 h exposure, while the same exposure to SSP caused only 4% apoptosis in metastatic T47D cells. Although complete apoptosis of both cell lines was induced by 50 M SSP, this effect was delayed in T47D (24 h) compared with HBL-100 (4 h). Results also showed that neither MTT or NR can distinguish between the modes of cell death, nor detect the early onset of apoptosis revealed by Hoechst/PI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed laser deposition was used to make a series of Au/Ba0.5Sr0.5TiO3 (BST)/SrRuO3/MgO thin film capacitors with dielectric thickness ranging from similar to15 nm to similar to1 mum. Surface grain size of the dielectric was monitored as a function of thickness using both atomic force microscopy and transmission electron microscopy. Grain size data were considered in conjunction with low field dielectric constant measurements. It was observed that the grain size decreased with decreasing thickness in a manner similar to the dielectric constant. Simple models were developed in which a functionally inferior layer at the grain boundary was considered as responsible for the observed dielectric behavior. If a purely columnar microstructure was assumed, then constant thickness grain-boundary dead layers could indeed reproduce the series capacitor dielectric response observed, even though such layers would contribute electrically in parallel with unaffected bulk- like BST. Best fits indicated that the dead layers would have a relative dielectric constant similar to40, and thickness of the order of tens of nanometers. For microstructures that were not purely columnar, models did not reproduce the observed dielectric behavior well. However, cross-sectional transmission electron microscopy indicated columnar microstructure, suggesting that grain boundary dead layers should be considered seriously in the overall dead-layer debate. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focused ion beam microscope has been used to cut parallel-sided {100}-oriented thin lamellae of single crystal barium titanate with controlled thicknesses, ranging from 530 nm to 70 nm. Scanning transmission electron microscopy has been used to examine domain configurations. In all cases, stripe domains were observed with {011}-type domain walls in perovskite unit-cell axes, suggesting 90 degrees domains with polarization in the plane of the lamellae. The domain widths were found to vary as the square root of the lamellar thickness, consistent with Kittel's law, and its later development by Mitsui and Furuichi and by Roytburd. An investigation into the manner in which domain period adapts to thickness gradient was undertaken on both wedge-shaped lamellae and lamellae with discrete terraces. It was found that when the thickness gradient was perpendicular to the domain walls, a continuous change in domain periodicity occurred, but if the thickness gradient was parallel to the domain walls, periodicity changes were accommodated through discrete domain bifurcation. Data were then compared with other work in literature, on both ferroelectric and ferromagnetic systems, from which conclusions on the widespread applicability of Kittel's law in ferroics were made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, zinc oxide nanoparticles have been synthesized by the sonochemical method in an ionic liquid, 1-hexyl-3-methylimidazolium his (trifluoromethylsulfonyl) imide, liquid [hmim][NTf2] as a solvent. The morphology and structure of ZnO nanoparticles have been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A possible mechanism is proposed to explain the formation of ZnO nanostructures. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles of ZnO with the wurtzite structure have been successfully synthesized via a microwave through the decomposition of zinc acetate dihydrate in an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as a solvent. Fundamental characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were conducted for the ZnO nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Template electrodeposition has been used to prepare a wide range of nanostructures but has generally been restricted to aqueous electrolytes. We report the deposition of silver nanowires in a commercial nuclear track-etched polycarbonate template from the nonaqueous ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using silver electrochemically dissolved from the anode. Transmission electron microscopy (TEM) shows that the nanowires have a very high aspect ratio with an average diameter of 80 nm and length of 5 mu m. Ionic liquid electrolytes should greatly extend the range of metals that can be electrodeposited as nanowires using templates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The flavin monooxygenase system (FMO) was inhibited using methimazole (MTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The FMO system was inhibited by a 2-h pre-incubation in methimazole (100 mu M), then incubated for a further 22 h in NCTC medium containing either MTZ; MTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM); MTZ+NADPH+TCBZ (15 mu g/ml); or MTZ+NADPH+triclabendazole sulphoxide (TCBZ.SO) (15 mu g/ml). Changes to fluke ultrastructure following drug treatment and metabolic inhibition were assessed using transmission electron microscopy. After treatment with either TCBZ or TCBZ.SO on their own, there was greater disruption to the TCBZ-susceptible than triclabedazole-resistant isolate. However, co-incubation with MTZ+TCBZ, but more particularly MTZ+TCBZ.SO, led to more severe changes to the TCBZ-resistant isolate than with each drug on its own, with severe swelling of the basal infolds and mucopolysaccharide masses in the syncytium, accompanied by a reduction in numbers of secretory bodies. The synthesis and production of secretory bodies in the tegumental cells was severely affected as well. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action. The results support the concept of altered drug metabolism in TCBZ-resistant flukes, and this process may play a role in the development of drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naturally occurring boundaries between bundles of 90o stripe domains, which form in BaTiO3 lamellae on cooling through the Curie Temperature, have been characterised using both piezoresponse force microscopy (PFM) and scanning transmission electron microscopy (STEM). Detailed interpretation of the dipole configurations present at these boundaries (using data taken from PFM) shows that, in the vast majority of cases, they are composed of simple zigzag 180° domain walls. Topological information from STEM shows that, occasionally, domain bundle boundaries can support chains of dipole flux closure and quadrupole nanostructures, but these kinds of boundaries are comparatively rare; when such chains do exist, it is notable that singularities at the cores of the dipole structures are avoided. The symmetry of the boundary shows that diads and centres of inversion exist at positions where core singularities should have been expected.