972 resultados para Immobilization in polyethersulfone membranes
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
El estudio del tráfico intracelular en neuronas ha despertado gran interés en los últimos años, debido a que un gran número de enfermedades neurodegenerativas y neuropsiquiátricas parecen tener origen en en el transporte defectuoso de proteínas en estos tipos celulares. Mediante el uso de técnicas de biología celular y molecular, fuimos capaces de describir una de las vías que regula la fisión de las vesículas que llevan su cargo desde la última cisterna del Aparato de Golgi hacia la superficie celular en células epiteliales no polarizadas. Uno de los componentes clave de esa vía resultó ser la Proteina Kinasa D1 (PKD1), cuya actividad en el Aparato de Golgi es esencial para un normal transporte intracelular. Sorprendentemente, observamos que la PKD1 en neuronas con polaridad establecida no regula la fisión en el Golgi, pero si estaría involucrada en la selectividad y distribución (sorting) de vesículas cuyo cargo debe ser específicamente dirigido a las membranas dendríticas. El bloqueo de la actividad de la PKD1 no solamente cambia el destino final de estos cargos, que son enviados de esta forma a la membrana terminal del axón, sino que también es capaz de inducir defectos en el desarrollo y crecimiento de los procesos dendríticos a largo plazo. En este proyecto estudiaremos de que manera influye la perturbación del sorting, en ausencia de PKD1 activa y de otros componentes que la regulan, en la distribución de receptores de factores neurotróficos y de neurotransmisores glutamatérgicos, y cómo estos cambios en su distribución afectan el número, tamaño, y funcionalidad de los procesos neuronales (axones y dendritas). Estos resultados contribuirán a adquirir mayores conocimientos de los mecanismos dependientes del transporte y sorting de proteínas de membrana que participan en la regulación del crecimiento neuronal, los cuales a su vez aportarán información valiosa en la comprensión de un gran número de enfermedades neurológicas. The study of intracellular trafficking in neurons has arisen a great deal of interest in the last years, since a great number of neurodegenerative and neuropsychiatric disorders seem to be originated in abnormal protein transport in these type of cells. Using cell and molecular biology methodologies, we have been capable of describe one of the pathways that regulate the fission of vesicles that carry their cargo from the last Golgi Apparatus cisternae to the cell surface in non-polarized epithelial cells. One of the key components in this pathway is the Protein Kinase D1 (PKD1), whose activity in the Golgi Apparatus is essential for a normal intracelular transport. Surprisingly, we have observed that PKD1 does not regulate fission in neurons with established polarity, but it would be involved in vesicles' sorting at Golgi, particularly of those that carry specific dendritic cargo. Blocking PKD1 activity changes the final destination of these cargoes, which is now sent to the axons' terminal membranes, and also produces late dendritic development and growing defects. In this project we will study how sorting perturbation in absence of PKD1 and its regulators activities influences selectivity and distribution of neurotrophic and neurotransmitter receptors, and how these sorting changes affect number, size and functionality of neuronal processes (axons and dendrites). These results will help to acquire greater knowledge about transport and sorting mechanisms of neuronal growth regulatory membrane proteins. In addition, these studies will contribute with new valuable information necessary to understand numerous neurological diseases.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.
Resumo:
PURPOSE: Retinal pigment epithelium (RPE) tear is an extremely rare complication in patients with classic neovascular membranes without RPE detachment. We evaluate their incidence and functional outcome following treatment with intravitreal ranibizumab. METHODS: Observational study of 72 consecutive patients (74 eyes) treated at Jules Gonin University Eye Hospital, Lausanne, with intravitreal ranibizumab 0.5 mg for classic choroidal neovascularization (CNV) between March 2006 and February 2008. Best-corrected visual acuity (BCVA), fundus examination and optical coherence tomography were recorded monthly; fluorescein angiography was performed at baseline and repeated at least every 3 months. RESULTS: RPE tears occurred in four (5.4%) eyes temporal to the fovea, after a mean of four injections (range 3-6). Mean baseline BCVA was 0.25 decimal equivalent (logMAR 0.67) and improved despite the RPE tear to 0.6 decimal equivalent (logMAR 0.22). CONCLUSION: RPE tears following intravitreal ranibizumab injections for classic CNV can occur in about 5% of patients, even in the absence of baseline RPE detachment. Nevertheless, vision may improve provided the fovea is not involved.
Resumo:
Clinical and experimental evidence suggests that synovial thrombin formation in arthritic joints is prominent and deleterious, leading to exacerbation of rheumatoid arthritis (RA). In this context, cellular effects of thrombin mediated by the protease-activated receptors (PARs) in arthritic joints may be of paramount significance. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin whereas PAR2 is activated by trypsin and few other proteases.We first explored PARs expression in RA synovial tissues. Synovial membranes from 11 RA patients were analyzed for PARs expression by RT-PCR and by immunohistology. PAR4 was found in all the biopsies, whereas the expression of PAR1, PAR 2 and PAR3 was more restricted (8/11, 5/11 and 3/11 respectively). In the arthritic synovial membrane of murine antigen-induced arthritis (AIA) we found coexpression of the four different PARs. Next, we explored the functional importance of PAR1 during AIA in vivo using PAR-1 deficient mice. The phenotype of PAR1-deficient mice (n = 22), based on the analysis of arthritis severity (as measured by 99 m tecnetium uptake, histological scoring and intra-articular fibrin measurements) was similar to that of wild-type mice (n = 24). In addition, the in vivo production of antibodies against mBSA was also similar. By contrast, the mBSA-induced in vitro lymph node cell proliferation was significantly decreased in PAR1-deficient mice as compared with controls. Accordingly, mBSA-induced production of interferon-γ by lymph node cells in culture was significantly decreased in PAR1-deficient mice as compared with controls, whereas opposite results were observed for production of IL-10.
Resumo:
A generic optical biosensing strategy was developed that relies on the absorbance enhancement phenomenon occurring in a multiple scattering matrix. Experimentally, inserts made of glass fiber membrane were placed into microplate wells in order to significantly lengthen the trajectory of the incident light through the sample and therefore increase the corresponding absorbance. Enhancement factor was calculated by comparing the absorbance values measured for a given amount of dye with and without the absorbance-enhancing inserts in the wells. Moreover, the dilution of dye in solutions with different refractive indices (RI) clearly revealed that the enhancement factor increased with the ΔRI between the membrane and the surrounding medium, reaching a maximum value (EF>25) when the membranes were dried. On this basis, two H2O2-biosensing systems were developed based on the biofunctionalization of the glass fiber inserts either with cytochrome c or horseradish peroxidase (HRP) and the analytical performances were systematically compared with the corresponding bioassay in solution. The efficiency of the absorbance-enhancement approach was particularly clear in the case of the cytochrome c-based biosensor with a sensitivity gain of 40 folds and wider dynamic range. Therefore, the developed strategy represents a promising way to convert standard colorimetric bioassays into optical biosensors with improved sensitivity.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.
Resumo:
A Ca-stimulated ATPase activity (pH 9.5) associated with the tegumental membrane enriched (TME) fraction of Schistosoma mansoni adults was partially inhibited by NAP-taurine or by increasing concentrations of chlorpromazine; endogenous calmodulin was found associated with the TME fraction. A similar activity (pH 8.6) was histochemically visualized whithin the tegument of fixed worms on the cytoplasmic leaflet of both the doubel surface membrane and the basement membrane; this reaction was inhibited by 1 µM chloropromazine and it was also observed on the inner side of double membrane vesicles present in the TME fraction. No ATPase activity could be seen at alkaline pH with added Mg or Na/K ions. Without ATP, the addition of external Ca to the fixed worms induced the appearance of lead precipitates on the tegumental discoid bodies; this reaction was inhibited by molybdate and not by chlorpromazine. The intrategumentary regulation of calcium by the systems described and the possible use of phenothiazines against schistosimes are discussed.
Resumo:
Based on homology with GLUT1-5, we have isolated a cDNA for a novel glucose transporter, GLUTX1. This cDNA encodes a protein of 478 amino acids that shows between 29 and 32% identity with rat GLUT1-5 and 32-36% identity with plant and bacterial hexose transporters. Unlike GLUT1-5, GLUTX1 has a short extracellular loop between transmembrane domain (TM) 1 and TM2 and a long extracellular loop between TM9 and TM10 that contains the only N-glycosylation site. When expressed in Xenopus oocytes, GLUTX1 showed strong transport activity only after suppression of a dileucine internalization motif present in the amino-terminal region. Transport activity was inhibited by cytochalasin B and partly competed by D-fructose and D-galactose. The Michaelis-Menten constant for glucose was approximately 2 mM. When translated in reticulocytes lysates, GLUTX1 migrates as a 35-kDa protein that becomes glycosylated in the presence of microsomal membranes. Western blot analysis of GLUTX1 transiently expressed in HEK293T cells revealed a diffuse band with a molecular mass of 37-50 kDa that could be converted to a approximately 35-kDa polypeptide following enzymatic deglycosylation. Immunofluorescence microscopy detection of GLUTX1 transfected into HEK293T cells showed an intracellular staining. Mutation of the dileucine internalization motif induced expression of GLUTX1 at the cell surface. GLUTX1 mRNA was detected in testis, hypothalamus, cerebellum, brainstem, hippocampus, and adrenal gland. We hypothesize that, in a similar fashion to GLUT4, in vivo cell surface expression of GLUTX1 may be inducible by a hormonal or other stimulus.
Resumo:
Dolichol-phosphate-mannose synthase catalyzes the formation of Dolichol-phosphate-mannose from Dolichol-phosphate and GDP-mannose. Analysis of the primary amino acid sequence of the yeast enzyme predicts a luminal orientation of the enzyme in the endoplasmic reticulum. We analysed the translocation of the Dolichol-phosphate-mannose synthase into dog pancreatic microsomal membranes: resistance to proteolytic attack provides evidence of its luminal orientation and asks for a reevaluation of the topology of the reaction.
Resumo:
Perinatal care of pregnant women at high risk for preterm delivery and of preterm infants born at the limit of viability (22-26 completed weeks of gestation) requires a multidisciplinary approach by an experienced perinatal team. Limited precision in the determination of both gestational age and foetal weight, as well as biological variability may significantly affect the course of action chosen in individual cases. The decisions that must be taken with the pregnant women and on behalf of the preterm infant in this context are complex and have far-reaching consequences. When counselling pregnant women and their partners, neonatologists and obstetricians should provide them with comprehensive information in a sensitive and supportive way to build a basis of trust. The decisions are developed in a continuing dialogue between all parties involved (physicians, midwives, nursing staff and parents) with the principal aim to find solutions that are in the infant's and pregnant woman's best interest. Knowledge of current gestational age-specific mortality and morbidity rates and how they are modified by prenatally known prognostic factors (estimated foetal weight, sex, exposure or nonexposure to antenatal corticosteroids, single or multiple births) as well as the application of accepted ethical principles form the basis for responsible decision-making. Communication between all parties involved plays a central role. The members of the interdisciplinary working group suggest that the care of preterm infants with a gestational age between 22 0/7 and 23 6/7 weeks should generally be limited to palliative care. Obstetric interventions for foetal indications such as Caesarean section delivery are usually not indicated. In selected cases, for example, after 23 weeks of pregnancy have been completed and several of the above mentioned prenatally known prognostic factors are favourable or well informed parents insist on the initiation of life-sustaining therapies, active obstetric interventions for foetal indications and provisional intensive care of the neonate may be reasonable. In preterm infants with a gestational age between 24 0/7 and 24 6/7 weeks, it can be difficult to determine whether the burden of obstetric interventions and neonatal intensive care is justified given the limited chances of success of such a therapy. In such cases, the individual constellation of prenatally known factors which impact on prognosis can be helpful in the decision making process with the parents. In preterm infants with a gestational age between 25 0/7 and 25 6/7 weeks, foetal surveillance, obstetric interventions for foetal indications and neonatal intensive care measures are generally indicated. However, if several prenatally known prognostic factors are unfavourable and the parents agree, primary non-intervention and neonatal palliative care can be considered. All pregnant women with threatening preterm delivery or premature rupture of membranes at the limit of viability must be transferred to a perinatal centre with a level III neonatal intensive care unit no later than 23 0/7 weeks of gestation, unless emergency delivery is indicated. An experienced neonatology team should be involved in all deliveries that take place after 23 0/7 weeks of gestation to help to decide together with the parents if the initiation of intensive care measures appears to be appropriate or if preference should be given to palliative care (i.e., primary non-intervention). In doubtful situations, it can be reasonable to initiate intensive care and to admit the preterm infant to a neonatal intensive care unit (i.e., provisional intensive care). The infant's clinical evolution and additional discussions with the parents will help to clarify whether the life-sustaining therapies should be continued or withdrawn. Life support is continued as long as there is reasonable hope for survival and the infant's burden of intensive care is acceptable. If, on the other hand, the health care team and the parents have to recognise that in the light of a very poor prognosis the burden of the currently used therapies has become disproportionate, intensive care measures are no longer justified and other aspects of care (e.g., relief of pain and suffering) are the new priorities (i.e., redirection of care). If a decision is made to withhold or withdraw life-sustaining therapies, the health care team should focus on comfort care for the dying infant and support for the parents.
Resumo:
PIKfyve is a kinase encoded by pip5k3 involved in phosphatidylinositols (PdtIns) pathways. These lipids building cell membranes have structural functions and are involved in complex intracellular regulations. Mutations in human PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy [Li, S., Tiab, L., Jiao, X., Munier, F.L., Zografos, L., Frueh, B.E., Sergeev, Y., Smith, J., Rubin, B., Meallet, M.A., Forster, R.K., Hejtmancik, J.F., Schorderet, D.F., 2005. Mutations in PIP5K3 are associated with François-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54-63]. We cloned the zebrafish pip5k3 and report its molecular characterization and expression pattern in adult fish as well as during development. The zebrafish PIKfyve was 70% similar to the human homologue. The gene encompassed 42 exons and presented four alternatively spliced variants. It had a widespread expression in the adult organs and was localized in specific cell types in the eye as the cornea, lens, ganglion cell layer, inner nuclear layer and outer limiting membrane. Pip5k3 transcripts were detected in early cleavage stage embryos. Then it was uniformly expressed at 10 somites, 18 somites and 24 hpf. Its expression was then restricted to the head region at 48 hpf, 72 hpf and 5 dpf and partial expression was found in somites at 72 hpf and 5 dpf. In situ on eye sections at 3 dpf showed a staining mainly in lens, outer limiting membrane, inner nuclear layer and ganglion cell layer. A similar expression pattern was found in the eye at 5 dpf. A temporal regulation of the spliced variants was observed at 1, 3 and 5 dpf and they were also found in the adult eye.
Resumo:
Serum laminin level was measured in chronic schistosomiasis. A significant increase in the mean serum laminin levels was observed in patients with hepatosplenic (HS) schistosomiasis (2,57 ± 0,83U/ml), as compared to those in patients with the hepatointestinal (HI) form of the disease (1,38 ± 0,45-U/ml) and in the control group (1,15 ± 0,31 U/ml). In the HS patients there was a significant direct relatiom between serum laminin and percutaneous splenic pulp pressure (r = 0,68). These findigs are compatible with an increased production of lamin in hepatosplenic schistosomiasis with may be related to the observed enlarged liver and spleen basement membranes in such disease.
Resumo:
Sir James Lighthill proposed in 1992 that acoustic streaming occurs in the inner ear, as part of the cochlear amplifier mechanism. Here we hypothesize that some of the most ancient organisms use acoustic streaming not only for self-propulsion but also to enhance their nutrient uptake. We focus on a motile strain of Synechococcus, a yanobacteria whose mechanism for self-propulsion is not known. Molecular motors could work like piezoelectric transducers acting on the crystalline structure surrounding the outer cell membrane. Our calculations show that a traveling surface acoustic wave (SAW)could account for the observed velocities. These SAW waves will also produce a non-negligible Stokes layer surrounding the cell: motion within this region being essentially chaotic. Therefore, an AS mechanism would be biologically advantageous, enhancing localized diffusion processes and consequently, chemical reactions. We believe that acoustic streaming, produced by nanometer scale membrane vibrations could be widespread in cell biology. Other possible instances are yeast cells and erythrocytes. Flows generated by acoustic streaming may also be produced by silica coated diatoms along their raphe. We note that microelectromechanical (MEMS) acoustic streaming devices were first introduced in the 1990’s. Nature may have preceded this invention by 2.7 Gyr.
Resumo:
We have applied both enzyme cytochemistry and immunological labeling techniques to characterize the enzyme 5'-nucleotidase (5'-Nase), at the ultrastructural level, in promastigote forms of four Leishmania species: Leishmania amazonensis, Leishmania mexicana, Leishmania donovani and Leishmania chagasi. The cerium phosphate staining was localized at the surface of the cell body, the flagellum and the flagellar pocket membranes of all the parasites studied. The immunogold labelling technique confirmed these results. In this report we localized 5'-Nase in L. chagasi and L. amazonensis which have been implicated respectively in visceral and cutaneous forms of leishmaniasis. In addition, we confirmed the localization of this phosphomonoesterase in the other two species studied. The superior quality of the images, obtained with both methodologies, confirms that these parasites possess mechanisms capable of hydrolyzing nucleotide monophosphates, and that the expression of 5'-Nase is associated with the outer surface of the plasma membrane.