919 resultados para Image-based mesh generation
Resumo:
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.
Resumo:
This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.
Resumo:
This paper presents automated segmentation of structuresin the Head and Neck (H\&N) region, using an activecontour-based joint registration and segmentation model.A new atlas selection strategy is also used. Segmentationis performed based on the dense deformation fieldcomputed from the registration of selected structures inthe atlas image that have distinct boundaries, onto thepatient's image. This approach results in robustsegmentation of the structures of interest, even in thepresence of tumors, or anatomical differences between theatlas and the patient image. For each patient, an atlasimage is selected from the available atlas-database,based on the similarity metric value, computed afterperforming an affine registration between each image inthe atlas-database and the patient's image. Unlike manyof the previous approaches in the literature, thesimilarity metric is not computed over the entire imageregion; rather, it is computed only in the regions ofsoft tissue structures to be segmented. Qualitative andquantitative evaluation of the results is presented.
Resumo:
In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.
Resumo:
OBJECTIVE: To explore the user-friendliness and ergonomics of seven new generation intensive care ventilators. DESIGN: Prospective task-performing study. SETTING: Intensive care research laboratory, university hospital. METHODS: Ten physicians experienced in mechanical ventilation, but without prior knowledge of the ventilators, were asked to perform eight specific tasks [turning the ventilator on; recognizing mode and parameters; recognizing and setting alarms; mode change; finding and activating the pre-oxygenation function; pressure support setting; stand-by; finding and activating non-invasive ventilation (NIV) mode]. The time needed for each task was compared to a reference time (by trained physiotherapist familiar with the devices). A time >180 s was considered a task failure. RESULTS: For each of the tests on the ventilators, all physicians' times were significantly higher than the reference time (P < 0.001). A mean of 13 +/- 8 task failures (16%) was observed by the ventilator. The most frequently failed tasks were mode and parameter recognition, starting pressure support and finding the NIV mode. Least often failed tasks were turning on the pre-oxygenation function and alarm recognition and management. Overall, there was substantial heterogeneity between machines, some exhibiting better user-friendliness than others for certain tasks, but no ventilator was clearly better that the others on all points tested. CONCLUSIONS: The present study adds to the available literature outlining the ergonomic shortcomings of mechanical ventilators. These results suggest that closer ties between end-users and manufacturers should be promoted, at an early development phase of these machines, based on the scientific evaluation of the cognitive processes involved by users in the clinical setting.
Resumo:
In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.
Resumo:
The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.
Resumo:
Transmission electron microscopy is a proven technique in the field of cell biology and a very useful tool in biomedical research. Innovation and improvements in equipment together with the introduction of new technology have allowed us to improve our knowledge of biological tissues, to visualizestructures better and both to identify and to locate molecules. Of all the types ofmicroscopy exploited to date, electron microscopy is the one with the mostadvantageous resolution limit and therefore it is a very efficient technique fordeciphering the cell architecture and relating it to function. This chapter aims toprovide an overview of the most important techniques that we can apply to abiological sample, tissue or cells, to observe it with an electron microscope, fromthe most conventional to the latest generation. Processes and concepts aredefined, and the advantages and disadvantages of each technique are assessedalong with the image and information that we can obtain by using each one ofthem.
Resumo:
Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240×40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with then underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (N300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.
Resumo:
The so-called < Sandwich Generation > (SG) is characterized by concurrent and competing professional, familial, and informal caregiving workloads. These stressors pose potential health risks. However, the current knowledge about SG characteristics and perceived state of health are insufficient to allow occupational health nurses to develop evidence-based interventions designed for health promotion. We aimed to describe this population and examine the relationships between these coexisting workloads and their perceived health. This study is based on a descriptive, correlational design. Employees of a Swiss public administration completed an electronic questionnaire. Of 844 respondents, 23 % are SG members. Ages of frailed parents or parents-in-law, co-residence with the latters, children still living at home predict that employees could be members of the SG. Perceived physical health status of SG members is rated better than mental health status. The heterogeneity of SG is reflected in three clusters. Finally, physical health score is the only that differs from the other health scores adjusting for clusters and sex. This study provides a foundation for developing preventive interventions targeting the SG.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
A nonlocal variational formulation for interpolating a sparsel sampled image is introduced in this paper. The proposed variational formulation, originally motivated by image inpainting problems, encouragesthe transfer of information between similar image patches, following the paradigm of exemplar-based methods. Contrary to the classical inpaintingproblem, no complete patches are available from the sparse imagesamples, and the patch similarity criterion has to be redefined as here proposed. Initial experimental results with the proposed framework, at very low sampling densities, are very encouraging. We also explore somedepartures from the variational setting, showing a remarkable ability to recover textures at low sampling densities.
Resumo:
Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.
Resumo:
Direct identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8(+) T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.
Resumo:
In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.