989 resultados para Image correlation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT) and conventional tillage (CT) systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that finite-size effects in the correlation functions away from equilibrium may be introduced through dimensionless numbers: the Nusselt numbers, accounting for both the nature of the boundaries and the size of the system. From an analysis based on fluctuating hydrodynamics, we conclude that the mean-square fluctuations satisfy scaling laws, since they depend only on the dimensionless numbers in addition to reduced variables. We focus on the case of diffusion modes and describe some physical situations in which finite-size effects may be relevant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé: Les récents progrès techniques de l'imagerie cérébrale non invasives ont permis d'améliorer la compréhension des différents systèmes fonctionnels cérébraux. Les approches multimodales sont devenues indispensables en recherche, afin d'étudier dans sa globalité les différentes caractéristiques de l'activité neuronale qui sont à la base du fonctionnement cérébral. Dans cette étude combinée d'imagerie par résonance magnétique fonctionnelle (IRMf) et d'électroencéphalographie (EEG), nous avons exploité le potentiel de chacune d'elles, soit respectivement la résolution spatiale et temporelle élevée. Les processus cognitifs, de perception et de mouvement nécessitent le recrutement d'ensembles neuronaux. Dans la première partie de cette thèse nous étudions, grâce à la combinaison des techniques IRMf et EEG, la réponse des aires visuelles lors d'une stimulation qui demande le regroupement d'éléments cohérents appartenant aux deux hémi-champs visuels pour en faire une seule image. Nous utilisons une mesure de synchronisation (EEG de cohérence) comme quantification de l'intégration spatiale inter-hémisphérique et la réponse BOLD (Blood Oxygenation Level Dependent) pour évaluer l'activité cérébrale qui en résulte. L'augmentation de la cohérence de l'EEG dans la bande beta-gamma mesurée au niveau des électrodes occipitales et sa corrélation linéaire avec la réponse BOLD dans les aires de VP/V4, reflète et visualise un ensemble neuronal synchronisé qui est vraisemblablement impliqué dans le regroupement spatial visuel. Ces résultats nous ont permis d'étendre la recherche à l'étude de l'impact que le contenu en fréquence des stimuli a sur la synchronisation. Avec la même approche, nous avons donc identifié les réseaux qui montrent une sensibilité différente à l'intégration des caractéristiques globales ou détaillées des images. En particulier, les données montrent que l'implication des réseaux visuels ventral et dorsal est modulée par le contenu en fréquence des stimuli. Dans la deuxième partie nous avons a testé l'hypothèse que l'augmentation de l'activité cérébrale pendant le processus de regroupement inter-hémisphérique dépend de l'activité des axones calleux qui relient les aires visuelles. Comme le Corps Calleux présente une maturation progressive pendant les deux premières décennies, nous avons analysé le développement de la fonction d'intégration spatiale chez des enfants âgés de 7 à 13 ans et le rôle de la myelinisation des fibres calleuses dans la maturation de l'activité visuelle. Nous avons combiné l'IRMf et la technique de MTI (Magnetization Transfer Imaging) afin de suivre les signes de maturation cérébrale respectivement sous l'aspect fonctionnel et morphologique (myelinisation). Chez lés enfants, les activations associées au processus d'intégration entre les hémi-champs visuels sont, comme chez l'adulte, localisées dans le réseau ventral mais se limitent à une zone plus restreinte. La forte corrélation que le signal BOLD montre avec la myelinisation des fibres du splenium est le signe de la dépendance entre la maturation des fonctions visuelles de haut niveau et celle des connections cortico-corticales. Abstract: Recent advances in non-invasive brain imaging allow the visualization of the different aspects of complex brain dynamics. The approaches based on a combination of imaging techniques facilitate the investigation and the link of multiple aspects of information processing. They are getting a leading tool for understanding the neural basis of various brain functions. Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. In this research, we explore the characteristics of interhemispheric assemblies in the visual brain by taking advantage of the complementary characteristics provided by EEG (electroencephalography) and fMRI (Functional Magnetic Resonance Imaging) techniques. These are the high temporal resolution for EEG and high spatial resolution for fMRI. In the first part of this thesis we investigate the response of the visual areas to the interhemispheric perceptual grouping task. We use EEG coherence as a measure of synchronization and BOLD (Blood Oxygenar tion Level Dependent) response as a measure of the related brain activation. The increase of the interhemispheric EEG coherence restricted to the occipital electrodes and to the EEG beta band and its linear relation to the BOLD responses in VP/V4 area points to a trans-hemispheric synchronous neuronal assembly involved in early perceptual grouping. This result encouraged us to explore the formation of synchronous trans-hemispheric networks induced by the stimuli of various spatial frequencies with this multimodal approach. We have found the involvement of ventral and medio-dorsal visual networks modulated by the spatial frequency content of the stimulus. Thus, based on the combination of EEG coherence and fMRI BOLD data, we have identified visual networks with different sensitivity to integrating low vs. high spatial frequencies. In the second part of this work we test the hypothesis that the increase of brain activity during perceptual grouping depends on the activity of callosal axons interconnecting the visual areas that are involved. To this end, in children of 7-13 years, we investigated functional (functional activation with fMRI) and morphological (myelination of the corpus callosum with Magnetization Transfer Imaging (MTI)) aspects of spatial integration. In children, the activation associated with the spatial integration across visual fields was localized in visual ventral stream and limited to a part of the area activated in adults. The strong correlation between individual BOLD responses in .this area and the myelination of the splenial system of fibers points to myelination as a significant factor in the development of the spatial integration ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the types and incidence of caruncular lesions and to investigate the correlation between clinical and histologic diagnosis. DESIGN: Retrospective, observational case series. METHODS: Records of patients with a lesion of the caruncle that was excised and submitted to our ocular pathology department between January 1979 and May 2005 were reviewed. Lesions were classified by histologic type and correlated with patient age, gender, and preoperative clinical diagnosis. RESULTS: A total of 195 consecutive caruncular lesions from 191 patients were identified. Twenty-four different types of lesions were identified; the most common were nevi (n = 92, 47%) and papillomas (n = 29, 15%). One keratoacanthoma was identified. One hundred eighty-three lesions (93.8%) were benign, six (3.1%) were premalignant, and five (2.6%) were malignant. Preoperative clinical diagnosis corresponded to postexcision histologic diagnosis in 73 cases (37.4%). Suspected malignancy was a common reason for excision (61 cases, 31.3%), but malignancy was confirmed in only three (4.9%) of 61 cases. Two of the five malignant lesions were clinically thought to be benign. CONCLUSIONS: We hereby report the first caruncular keratoacanthoma. The rarity and variety of caruncular lesions make clinical diagnosis difficult. Malignancy is clinically overestimated, and some malignant lesions can take a benign aspect, justifying close photographic follow-up of all lesions. Because caruncular malignant melanoma is associated with poor prognosis, pigmented lesions should be monitored carefully. In the absence of clear criteria for malignancy, any change in color, size, or vascularization of a caruncular lesion should hasten excision.